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Appendix

In the case of AE, reconstruction loss is a mean squared error (MSE) between
an input z and output z’ of the network: £(z,2') = ||z — ’||*>. The network
can be trained using standard machine learning techniques for training such as
backpropagation. We utilise a regularized version of a standard AE which is
known as Sparse Autoencoder. While L1 regularization is applied to the weight
matrix of the final dense layer of the encoder which produced the latent vectors
to make it sparse, L2 regularization is utilized for output of this layer to prevent
its growth and overfitting [25].

Another version of considered autoencoders is Sliced- Wasserstein Autoen-
coder (SWAE). This is a generative model with a simple implementation and
which does not require adversarial training [20]. SWAE objective consists of a
Wasserstein distance W, between the distribution of input px and a decoder
px, and is regularized with the sliced-Wasserstein distance SW, between the
distribution of encoded training samples pz and, in our experiments, a uniform
distribution in the embedding space qz:

argmin. We(px,px) + ASWel(pz, 4z), (1)

where ¢ and 6 are the parameters of probabilistic encoder and decoder respec-
tively.

Finally, we consider VAE and (3-VAFE in our autoencoder study for feature
extraction. In the case of VAE [19], variational lower bound is:

L(0,¢;x) = =Di1(gs(2[2)[[po(2)) + Eq, (212 [log po (z]2)], 2)

assuming that the prior py(z) is a unit Gaussian distribution A(0,7) and the
approximate posterior g, (z|z) is a Gaussian N (u,0?) with parameters p and
o as outputs of the encoder. The lower bound —L(6, ¢; ) must be minimized
w.r.t. ¢ and . We can notice in the right hand side the regularization term in
the form of KL divergence and the reconstruction term in the form of expected
likelihood.

In the case of S-VAE [13], the beta-variational loss can be defined with one
Lagrangian multiplier hyperparameter (:

[’(67 (b; z,z, ﬂ) = _Eq¢(z|ac) [10gpg($|2)] + 6DKL(Q¢(z|x)||p(Z)) (3)

The smaller values of 3, less than one, encourage the expression to be in a form
of an autoencoder, with the value § = 1 being a standard VAE explained above,
the greater values restrict the representation capacity of the latent space. We
tested the values of 3 in a range from 0.1 to 100.
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Method Convo- | Latent | Neighbor- | Silhouette |Calinski- Davies-
type lution | dim. hood hit Harabasz Bouldin
Sparse AE 2D 64 0.9850.005 -0.0060.047 |282.766.7 4.21.8
Sparse AE 2D 128 0.9780.005 -0.0240.01 |122.848.8 9.22.8
Sparse AE 2D 256 0.9740.004 -0.040.044 |90.970.3 15.112.6
SWAE 2D 2 0.9940.001 0.3050.049 |1131.1145.4 1.50.2
SWAE 2D 4 0.9410.005 | -0.0630.034 |27.113.5 15.19.1
SWAE 2D 8 0.9740.004 0.040.035 |431.3179.3 2.50.7
SWAE 2D 16 0.9650.005 -0.0060.043 [302.178.9 4.71.5
SWAE 2D 32 0.9570.006 | -0.0470.032 |150.178.5 5.12.3
SWAE 2D 64 0.9560.005 | -0.0610.061 |109.9132.3 9.84.8
SWAE 2D 128 0.9740.003 0.0510.077 |416.6223.5 2.60.6
VAE 2D 128 0.9930.001 0.1310.068 |375.8170.8 3.52.6
VAE 2D 256 0.9940.001 0.0990.089 [305.7190.3 4.41.9
B(2)-VAE 2D 32 0.9910.003 0.1950.055 |560.7177.7 2.51.0
B8(2)-VAE 2D 64 0.9920.001 0.1410.106 |426.8141.0 2.91.2
8(2)-VAE 2D 128 0.9930.001 0.1130.062 [359.6123.3 3.20.8
B(2)-VAE 2D 256 0.9920.001 0.1710.064 |453.885.5 3.11.4
B(4)-VAE 2D 128 0.9860.003 0.2260.049 |794.4264.5 2.31.3
B(4)-VAE 2D 256 0.9780.006 0.2580.095 |1277.7610.9 1.40.3
B(6)-VAE 2D 128 0.9730.004 0.2870.028 |1135.1266.5 1.30.3
B(6)-VAE 2D 256 0.9210.027 0.2090.039 {986.0246.0 1.60.4
B(8)-VAE 2D 32 0.9470.009 | 0.3170.036 |1504.8399.1 |1.30.6
B(8)-VAE 2D 64 0.9640.01 0.2870.083 [1284.5491.7  |1.50.6
B(8)-VAE 2D 128 0.9120.027 0.2720.036 |1278.4154.8 1.30.2
B(8)-VAE 2D 256 0.8670.043 0.2470.03 |1284.8206.5 1.40.2
3(10)-VAE 2D 128 0.8880.028 0.2920.029 [1382.1236.7 1.40.3
5(10)-VAE 2D 256 0.7750.028 0.2110.043 |1108.4231.3 1.40.5
6(20)-VAE 2D 32 0.3460.269 0.0390.132 |282.0629.1 76.751.4
3(20)-VAE 2D 64 0.8140.014 0.2570.022 |1303.7218.9 1.20.3
3(20)-VAE 2D 128 0.7420.037 0.2250.041 |1062.9183.9 1.30.2
3(20)-VAE 2D 256 0.5880.037 0.1020.03 [638.398.6 2.20.7
5(100)-VAE 2D 128 0.2280.003 -0.0270.004 |2.62.7 64.342.1
B(100)-VAE | 2D 256 0.2270.003 | -0.0220.005 |0.80.4 118.4102.8
Baseline - - 0.977+0.008 | -0.061£0.033 {90.74+63.1 8.845.8

Table 1: Metrics scores of all models performing feature extraction on the MCMC

ensemble.
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Method Convo- | Latent | Neighbor- | Silhouette |Calinski- Davies-
type lution | dim. hood hit Harabasz Bouldin
Sparse AE 2D 64 0.6770.006 | -0.0440.022 |735.7284.5 4.62.1
Sparse AE 2D 128 0.6710.017 | -0.0630.029 [642.0193.7 3.70.8
Sparse AE 2D 256 0.6730.01 -0.0520.015 |657.6131.5 6.85.0
VAE 2D 128 0.6330.001 -0.0250.014 |617.983.8 5.91.8
VAE 2D 256 0.590.01 -0.0280.01 [608.295.1 4.71.1
B(4)-VAE 2D 128 0.4830.014 | -0.0610.011 [549.719.0 7.33.3
AE 3D 64 0.7750.008 | -0.0910.011 [408.484.8 5.72.7
AE 3D 128 0.7720.01 -0.1290.016 |353.7115.2 5.71.0
AE 3D 256 0.7820.009 | -0.0850.015 [458.848.2 4.90.9
Sparse AE 3D 256 0.770.006 -0.1110.02  339.1100.7 6.33.3
SWAE 3D 32 0.7730.014 | -0.0830.008 [655.6104.0 4.71.9
SWAE 3D 64 0.7730.01 -0.1010.015 |583.685.7 5.314
SWAE 3D 128 0.7620.018 | -0.0930.026 [552.8152.3 4.71.1
£3(0.1)-VAE 3D 256 0.7230.011 | -0.0050.03 |831.3224.1 [3.60.3
VAE 3D 256 0.5920.024 -0.020.016 |797.258.9 9.62.4
B(2)-VAE 3D 256 0.5140.011 -0.050.014 |640.680.3 10.52.2
5(4)-VAE 3D 256 0.4210.012 -0.080.017 [583.960.8 15.73.7
£(10)-VAE 3D 256 0.3010.004 | -0.0940.011 [400.221.3 15.63.5
Baseline - — 0.6410.011 -0.1120.029 |449.3156.8 9.23.9

Table 2: Metrics scores of all models performing feature extraction on the Drop
Dynamics ensemble.
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Layer type Output Shape Detalils
Input (batch size, 3, h, w, 1) height = h, width = w
Conv3D (batch size, 1, h/2, w/2, 64)| kernel size = (3, 3, 3), stride = (3, 2, 2)
Conv3D (batch size, 1, h/4, w/4, 64)| kernel size = (1, 3, 3), stride = (1, 2, 2)
Conv3D (batch size, 1, h/8, w/8, 64)| kernel size = (1, 3 3), stride = (1, 2, 2)
Conv3D (batch size, 1, h/16, w/16, | kernel size = (1, 3, 3), stride = (1, 2, 2)
64)
Flatten (batch size, 1, (h/16) - reshape before dense layer
(w/16) - 64)
Dense (batch size, num. of units) first dense layer of encoder
AFE: Dense (batch size, latent second dense layer
dimension)
VAE: Dense (u,logo) (batch size, latent two parallel dense layers for VAE
dimension)
VAE: Sample z (batch size, latent reparameterization trick for VAE
dimension)
Dense (batch size, 1, (h/16) - first dense layer of decoder
(w/16) - 64)
Reshape (batch size, 1, (h/16) - reshape before deconvolutions
(w/16) - 64)
Conv3DTranspose |(batch size, 1, h/8, w/8, 64)| kernel size = (1, 3, 3), stride = (1, 2, 2)
Conv3DTranspose |(batch size, 1, h/4, w/4, 64)| kernel size = (1, 3, 3), stride = (1, 2, 2)
Conv3DTranspose |(batch size, 1, h/2, w/2, 64)| kernel size = (1, 3, 3), stride = (1, 2, 2)
Conv3DTranspose (batch size, 1, h, w, 64) kernel size = (3, 3, 3), stride = (3, 2, 2)
Conv3DTranspose (batch size, 1, h, w, 1) kernel size = (3, 3, 3), stride = (1, 1, 1)

Table 3: 3D AE/VAE architecture used on Drop Dynamics ensemble. The dif-
ference is highlighted in italics in the bottleneck.
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