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Appendix

In the case of AE, reconstruction loss is a mean squared error (MSE) between
an input x and output x′ of the network: L(x, x′) = ‖x− x′‖2. The network
can be trained using standard machine learning techniques for training such as
backpropagation. We utilise a regularized version of a standard AE which is
known as Sparse Autoencoder. While L1 regularization is applied to the weight
matrix of the final dense layer of the encoder which produced the latent vectors
to make it sparse, L2 regularization is utilized for output of this layer to prevent
its growth and overfitting [25].

Another version of considered autoencoders is Sliced-Wasserstein Autoen-
coder (SWAE). This is a generative model with a simple implementation and
which does not require adversarial training [20]. SWAE objective consists of a
Wasserstein distance Wc between the distribution of input pX and a decoder
pX′ , and is regularized with the sliced-Wasserstein distance SWc between the
distribution of encoded training samples pZ and, in our experiments, a uniform
distribution in the embedding space qZ :

argmin
φ,θ

Wc(pX , pX′) + λSWc(pZ , qZ), (1)

where φ and θ are the parameters of probabilistic encoder and decoder respec-
tively.

Finally, we consider VAE and β-VAE in our autoencoder study for feature
extraction. In the case of VAE [19], variational lower bound is:

L(θ, φ;x) = −DKL(qφ(z|x)||pθ(z)) + Eqφ(z|x)[log pθ(x|z)], (2)

assuming that the prior pθ(z) is a unit Gaussian distribution N (0, I) and the
approximate posterior qφ(z|x) is a Gaussian N (µ, σ2) with parameters µ and
σ as outputs of the encoder. The lower bound −L(θ, φ;x) must be minimized
w.r.t. φ and θ. We can notice in the right hand side the regularization term in
the form of KL divergence and the reconstruction term in the form of expected
likelihood.

In the case of β-VAE [13], the beta-variational loss can be defined with one
Lagrangian multiplier hyperparameter β:

L(θ, φ;x, z, β) = −Eqφ(z|x)[log pθ(x|z)] + βDKL(qφ(z|x)||p(z)). (3)

The smaller values of β, less than one, encourage the expression to be in a form
of an autoencoder, with the value β = 1 being a standard VAE explained above,
the greater values restrict the representation capacity of the latent space. We
tested the values of β in a range from 0.1 to 100.
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Method
type

Convo-
lution

Latent
dim.

Neighbor-
hood hit

Silhouette Calinski-
Harabasz

Davies-
Bouldin

Sparse AE 2D 64 0.9850.005 -0.0060.047 282.766.7 4.21.8
Sparse AE 2D 128 0.9780.005 -0.0240.01 122.848.8 9.22.8
Sparse AE 2D 256 0.9740.004 -0.040.044 90.970.3 15.112.6
SWAE 2D 2 0.9940.001 0.3050.049 1131.1145.4 1.50.2
SWAE 2D 4 0.9410.005 -0.0630.034 27.113.5 15.19.1
SWAE 2D 8 0.9740.004 0.040.035 431.3179.3 2.50.7
SWAE 2D 16 0.9650.005 -0.0060.043 302.178.9 4.71.5
SWAE 2D 32 0.9570.006 -0.0470.032 150.178.5 5.12.3
SWAE 2D 64 0.9560.005 -0.0610.061 109.9132.3 9.84.8
SWAE 2D 128 0.9740.003 0.0510.077 416.6223.5 2.60.6
VAE 2D 128 0.9930.001 0.1310.068 375.8170.8 3.52.6
VAE 2D 256 0.9940.001 0.0990.089 305.7190.3 4.41.9
β(2)-VAE 2D 32 0.9910.003 0.1950.055 560.7177.7 2.51.0
β(2)-VAE 2D 64 0.9920.001 0.1410.106 426.8141.0 2.91.2
β(2)-VAE 2D 128 0.9930.001 0.1130.062 359.6123.3 3.20.8
β(2)-VAE 2D 256 0.9920.001 0.1710.064 453.885.5 3.11.4
β(4)-VAE 2D 128 0.9860.003 0.2260.049 794.4264.5 2.31.3
β(4)-VAE 2D 256 0.9780.006 0.2580.095 1277.7610.9 1.40.3
β(6)-VAE 2D 128 0.9730.004 0.2870.028 1135.1266.5 1.30.3
β(6)-VAE 2D 256 0.9210.027 0.2090.039 986.0246.0 1.60.4
β(8)-VAE 2D 32 0.9470.009 0.3170.036 1504.8399.1 1.30.6
β(8)-VAE 2D 64 0.9640.01 0.2870.083 1284.5491.7 1.50.6
β(8)-VAE 2D 128 0.9120.027 0.2720.036 1278.4154.8 1.30.2
β(8)-VAE 2D 256 0.8670.043 0.2470.03 1284.8206.5 1.40.2
β(10)-VAE 2D 128 0.8880.028 0.2920.029 1382.1236.7 1.40.3
β(10)-VAE 2D 256 0.7750.028 0.2110.043 1108.4231.3 1.40.5
β(20)-VAE 2D 32 0.3460.269 0.0390.132 282.0629.1 76.751.4
β(20)-VAE 2D 64 0.8140.014 0.2570.022 1303.7218.9 1.20.3
β(20)-VAE 2D 128 0.7420.037 0.2250.041 1062.9183.9 1.30.2
β(20)-VAE 2D 256 0.5880.037 0.1020.03 638.398.6 2.20.7
β(100)-VAE 2D 128 0.2280.003 -0.0270.004 2.62.7 64.342.1
β(100)-VAE 2D 256 0.2270.003 -0.0220.005 0.80.4 118.4102.8
Baseline – – 0.977±0.008 -0.061±0.033 90.7±63.1 8.8±5.8

Table 1: Metrics scores of all models performing feature extraction on the MCMC
ensemble.
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Method
type

Convo-
lution

Latent
dim.

Neighbor-
hood hit

Silhouette Calinski-
Harabasz

Davies-
Bouldin

Sparse AE 2D 64 0.6770.006 -0.0440.022 735.7284.5 4.62.1
Sparse AE 2D 128 0.6710.017 -0.0630.029 642.0193.7 3.70.8
Sparse AE 2D 256 0.6730.01 -0.0520.015 657.6131.5 6.85.0
VAE 2D 128 0.6330.001 -0.0250.014 617.983.8 5.91.8
VAE 2D 256 0.590.01 -0.0280.01 608.295.1 4.71.1
β(4)-VAE 2D 128 0.4830.014 -0.0610.011 549.719.0 7.33.3
AE 3D 64 0.7750.008 -0.0910.011 408.484.8 5.72.7
AE 3D 128 0.7720.01 -0.1290.016 353.7115.2 5.71.0
AE 3D 256 0.7820.009 -0.0850.015 458.848.2 4.90.9
Sparse AE 3D 256 0.770.006 -0.1110.02 339.1100.7 6.33.3
SWAE 3D 32 0.7730.014 -0.0830.008 655.6104.0 4.71.9
SWAE 3D 64 0.7730.01 -0.1010.015 583.685.7 5.31.4
SWAE 3D 128 0.7620.018 -0.0930.026 552.8152.3 4.71.1
β(0.1)-VAE 3D 256 0.7230.011 -0.0050.03 831.3224.1 3.60.3
VAE 3D 256 0.5920.024 -0.020.016 797.258.9 9.62.4
β(2)-VAE 3D 256 0.5140.011 -0.050.014 640.680.3 10.52.2
β(4)-VAE 3D 256 0.4210.012 -0.080.017 583.960.8 15.73.7
β(10)-VAE 3D 256 0.3010.004 -0.0940.011 400.221.3 15.63.5
Baseline – – 0.6410.011 -0.1120.029 449.3156.8 9.23.9

Table 2: Metrics scores of all models performing feature extraction on the Drop
Dynamics ensemble.
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Layer type Output Shape Details

Input (batch size, 3, h, w, 1) height = h, width = w

Conv3D (batch size, 1, h/2, w/2, 64) kernel size = (3, 3, 3), stride = (3, 2, 2)

Conv3D (batch size, 1, h/4, w/4, 64) kernel size = (1, 3, 3), stride = (1, 2, 2)

Conv3D (batch size, 1, h/8, w/8, 64) kernel size = (1, 3, 3), stride = (1, 2, 2)

Conv3D (batch size, 1, h/16, w/16,
64)

kernel size = (1, 3, 3), stride = (1, 2, 2)

Flatten (batch size, 1, (h/16) ·
(w/16) · 64)

reshape before dense layer

Dense (batch size, num. of units) first dense layer of encoder

AE : Dense (batch size, latent
dimension)

second dense layer

VAE : Dense (µ, log σ) (batch size, latent
dimension)

two parallel dense layers for VAE

VAE : Sample z (batch size, latent
dimension)

reparameterization trick for VAE

Dense (batch size, 1, (h/16) ·
(w/16) · 64)

first dense layer of decoder

Reshape (batch size, 1, (h/16) ·
(w/16) · 64)

reshape before deconvolutions

Conv3DTranspose (batch size, 1, h/8, w/8, 64) kernel size = (1, 3, 3), stride = (1, 2, 2)

Conv3DTranspose (batch size, 1, h/4, w/4, 64) kernel size = (1, 3, 3), stride = (1, 2, 2)

Conv3DTranspose (batch size, 1, h/2, w/2, 64) kernel size = (1, 3, 3), stride = (1, 2, 2)

Conv3DTranspose (batch size, 1, h, w, 64) kernel size = (3, 3, 3), stride = (3, 2, 2)

Conv3DTranspose (batch size, 1, h, w, 1) kernel size = (3, 3, 3), stride = (1, 1, 1)

Table 3: 3D AE/VAE architecture used on Drop Dynamics ensemble. The dif-
ference is highlighted in italics in the bottleneck.
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