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Abstract We present a data-driven visual analysis approach for the in-depth
exploration of large numbers of droplets. Understanding droplet dynamics in sprays
is of interest across many scientific fields for both simulation scientists and engineers.
In this paper, we analyze large-scale direct numerical simulation datasets of two-
phase flow of non-Newtonian jets. Our interactive visual analysis approach comprises
various dedicated exploration modalities that are supplemented by directly linking
to ParaView. This hybrid setup supports a detailed investigation of droplets, both
in the spatial domain and in terms of physical quantities. Considering a large
variety of extracted physical quantities for each droplet enables the investigation
of different aspects of interest in our data. To get an overview of different types of
characteristic behavior, we cluster massive numbers of droplets to analyze different
types of occurring behaviors via domain-specific pre-aggregation, as well as different
methods and parameters. Extraordinary temporal patterns are of high interest
especially to investigate edge cases and detect potential simulation issues. For
this, we use a neural network-based approach to predict the development of these
physical quantities, and with this identify irregularly advected droplets.

Keywords Flow Visualization · Time-varying Data · Visualization in Physical
Sciences and Engineering.

1 Introduction

Flow visualization has mostly been concerned with the analysis of single-phase
flow, i.e., flows where a single type of fluid is involved (e.g., airflow around objects,
or liquid flow through machinery). However, in many problems in science and
engineering, two or even more phases are involved, such as in the case of water
flowing in a domain containing air, or in the dynamics of immiscible liquids. A
major difficulty with the analysis of such multiphase flow is, however, its various
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Fig. 1: Interface between liquid and air in the Jet Simulation dataset after the
formation of a stable jet. Each time step features a rectilinear grid with a resolution
of 1 536× 512× 512 cells covering a domain of 12 cm× 4 cm× 4 cm; 623 time steps
represent a time span of 5.567 ms. The result is a volume of fluid field f and a
velocity field u, both are given in cell-based representation.

degrees of complexity. On the one hand, it inherits all complexity of single-phase
flow, whose visualization is subject to ongoing research. On the other hand, the
dynamics and physics of the interface between the different phases are closely
interrelated with the flow, as well as phenomena from solid mechanics such as
collision, deformation, and adhesion. And last but not least, the volume of fluid
method (VOF) (Hirt and Nichols, 1981), which is typically used for simulating
multiphase flow, further complicates analysis and interpretation. One reason is that
the interface between the phases is not tracked, but reconstructed at each time
step during simulation, leading to inconsistencies between the flow in the vector
field and the motion of the interface.

A phenomenon in two-phase flow with particularly high complexity is the
formation of sprays. Sprays play an essential role in a wide range of natural
phenomena and production, including precipitation, combustion, food processing,
production and application of drugs, and cooling. In technical applications, sprays
are typically generated by guiding the liquid through a spray nozzle, which produces
an unstable jet that eventually breaks up into droplets. The dynamics of this
breakup is highly complex, with primary breakup producing elongated components
called ligaments, followed by secondary breakup of ligaments into droplets.

All these processes and complexities make the resulting data extremely hard to
navigate and analyze, also due to their spatiotemporal nature. While traditional
visualization approaches are applicable to subsets and partial aspects of the data,
they cannot provide an effective means for hypothesis forming and hypothesis
testing for the entire data, in particular because the importance and interrelations
of specific quantities and processes are buried in the discussed degrees of complexity.
Another difficult aspect is that in order to be able to resolve the complex dynamics
involved at small scales, high temporal and spatial resolution of the data is required.
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This results in data sizes quickly reaching terabytes, impeding the direct application
of many types of advanced analysis procedures. While interactive exploration is
required to analyze the complex, small-scale effects, this is challenging with the
large data sizes and numbers of droplets.

In this work, we aim to analyze the droplets in a two-phase DNS flow simulation
of the breakup of a liquid jet in air (cf. Figure 1). This simulation was conducted
by Ertl (Ertl and Weigand, 2017; Ertl, 2019) using FS3D (Eisenschmidt et al.,
2016) and considered water with 0.3% flocculant, leading to non-Newtonian fluid
behavior. In this case, the interest of the simulation scientists focused on the
fully converged phase of the jet. Accordingly, we mainly consider a respective
sub-sequence of 101 time steps covering 0.679 ms from the full simulation (only
collision and separation counters cover the full 623 time steps). The total data size
is around 7 TB (i.e., ≈1 TB for the focused subset of 101 time steps).

Our dedicated visual analysis approach provides different hypothesis forming
tools to analyze droplet behavior in the data. Our goal is (i) to allow simulation and
domain scientists to analyze what common types of droplets and their behaviors
are, and (ii) to identify and study anomalous—i.e. uncommon—cases in-depth.
Below, after discussing related work (Section 2), we describe our workflow enabling
the interactive visual analysis of large sets of droplets based on the extraction
of meaningful quantities and advanced further automated analysis, including
clustering and machine learning-based anomaly detection (Section 3). Our visual
analytics system then provides different perspectives on abstract and spatial
quantities, as well as allowing for detailed flow analysis with the original raw
data (Section 4). Finally, we present insights gained from visual analysis (Section 5)
before concluding Section 6.

We present the first visual analysis approach for complex time-dependent
multiphase flow data. By combing domain specific clustering techniques with an
artificial neural network for learning droplet anomaly behavior we developed a
highly interactive framework to support flow scientists in the complicated tasks of
analyzing terabytes of simulation data.

2 Related Work

Our data stems from a CFD solver for multiphase flow simulation of incompressible
fluids. This solver (Eisenschmidt et al., 2016) uses the VOF method (Hirt and
Nichols, 1981), in combination with Piecewise Linear Interface Calculation (PLIC)
as interface reconstruction algorithm that we also use in this work to analyze
droplets (cf. Karch et al. (2013) for a discussion of PLIC in visualization).

The visual analysis of time-dependent flow fields is challenging. Aigner et al.
(2007) discuss the consideration of time as an additional dimension in visual
analytics. Buerger et al. (2007) integrate local feature detectors in the visual
analysis of time-dependent flow simulations. Another line of work concerned itself
with the interactive exploration of complex time-dependent flow simulations and
real-world data (Doleisch et al., 2003; Helmut et al., 2004; Doleisch et al., 2004).
Shi et al. (2007) introduced an approach to visually analyze time-dependent flow
fields by means of pathlines in particular. An overview of different feature tracking
techniques for flow visualization was presented by Post et al. (2003). Further Theisel
and Seidel (2003) show a stream line integration-based method for feature tracking
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in instationary vector fields. Garth et al. (2004) discuss an approach for tracking
singularities within a vector field. In contrast to these previous works, while we
also employ techniques from flow visualization for the detailed investigation of
individual droplets, our specific focus on large numbers of droplet data feature
quite unique challenges that we aim to address in this work. Further previous work
already focused on feature tracking in the context of large-scale datasets (Dutta
and Shen, 2016) and calculating tracking information in situ (Biswas et al., 2020).

Combining flow visualization and machine learning, Tzeng and Ma (2005)
used neural networks to generate adaptive transfer functions based on user input.
Bai et al. (2017) applied linear discriminant analysis to classify experimental
images into actuated and unactuated flow. In this paper we also apply neural
networks to support flow visualization, but use them to generate visual features
that help guiding the analysis. Tkachev et al. (2019) trained neural networks
on spatiotemporal volumes to detect irregular behavior. In this work, we use a
similar idea for our anomaly detection, but we apply our model to time series
of extracted droplet quantities. Machine learning has also been applied in fluid
simulations. Artificial neural networks are even used within solvers of the Navier
Stokes equation (Tompson et al., 2017) for acceleration of the computation. In
visualization in general, machine learning methods are particularly popular in
visual analytics approaches (Endert et al., 2017).

This work started in the context of a master thesis (Heinemann, 2018) which
was reported in a very early version in a project report (Straub et al., 2019) and
within a book chapter, Straub and Ertl (2020). The idea of using ML for prediction
on droplet quantity time series is already mentioned there, but due to its overview
character, no details of our technique were presented. Further an early version of
the surface view of our prototype was depicted there. In this article we introduce
our entire frame work and elaborate on new features like clustering, improvements
to the 3D surface view and extension to the full system including the quantity and
flow view and also an analysis and discussion of the used dataset.

3 Preprocessing: Extraction, Clustering and Anomaly Detection

To make the data (interactively) explorable while still capturing the various degrees
of complexity of droplet behavior, we first extract different quantities on the basis of
individual droplet instances (Section 3.1, cf. Figure 2). Next, we establish temporal
relationships by connecting individual droplet instances between the time steps
to time-continuous droplet traces (Section 3.2). To get an overview of the droplet
quantities we are using trace-based hierarchical clustering (Section 3.3). In addition,
we train a regression model to capture typical temporal patterns in a droplets’
quantities, followed by determination of the deviations from this model to guide
the researcher to cases that are anomalous in the sense of being uncommon. Akin
to previous work (Tkachev et al., 2019), we chose artificial neural networks (ANNs)
due to their generality, performance efficiency on large data (compared to, e.g.,
non-parameteric models), and their successful applications across many diverse
tasks (Section 3.4). Below, we particularly focus on the application and adaptation
of the different methods involved to enable the interactive exploration of large
numbers of droplets (Section 4). An overview of the order and dependencies of our
processing steps can be seen in Figure 2.
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Fig. 2: Overview on the components of our visual analysis approach. This represents
the execution order of our processing pipeline and shows data dependency of all
steps described within Section 3 and Section 4. Each of the black arrows represents
data usage from the previous step.

3.1 Extraction of Quantities

We extract different instantaneous quantities for each droplet instance that capture
the various degrees of complexity of droplet behavior. In collaboration with domain
experts, the following set of instantaneous quantities has been determined, ranging
from purely geometric to purely physical.

Data Representation and Segmentation. The first step consists in the identification
of the individual droplets. The employed VOF approach in our two-phase flow
simulation maintains a scalar field f(x) ∈ R during simulation. This field stores
conceptually for each point x ∈ R3 the volume fraction of the liquid, i.e., f = 0
representing only gas, f = 1 representing only liquid, and 0 < f < 1 mixtures of
both. Here, f(x) is defined in a cell-based manner, i.e., the field stores this total
fraction for each cell i individually, in piecewise constant representation. Thus, fi
represents the value of the f -field for cell i. Similarly, the velocity field u(x) is
given in cell-based representation ui. In the domain, a droplet is commonly defined
as the face-connected component of cells that exhibit fi > 0. In practice, due to
the numerical limitations of the simulation, we use the slightly modified definition
fi > τf , with τf = 10−6. This value is defined by our domain experts, who run the
simulation. Thus, we obtain the droplets by connected component labeling using
region growing, resulting in a cell-based label field l(x), where li stores the droplet
identifier ι of the droplet that cell i belongs to.

A further peculiarity of two-phase flow simulation is the representation of the
interface between the two phases via PLIC (Youngs, 1984). During simulation, the
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interface is represented in a piecewise planar manner, i.e., within each cell with
0 < f < 1, a planar patch represents the interface. It is determined by using the
negative gradient of the f -field as plane normal and choosing the position such that
the volume below the patch is exactly the volume fraction represented by fi. This
piecewise linear representation per cell results in a discontinuous global interface
containing gaps (see, e.g., Figure 13). Obviously, using isosurface extraction for
interface representation would violate both the connected component definition
of droplets as well as interface representation, and is thus dissuaded by domain
experts. Therefore, we use the PLIC patches as geometric interface representation
for both the computation of derived quantities and rendering, similar to Karch
et al. (2013), at the cost of accepting the discontinuities.

Main Instantaneous Quantities. We want the extracted quantities to capture
droplet behavior reasonably accurate, but at the same time we are limited to
quantities which can be calculated purely from the VOF and velocity field. Further
we need a minimum of numeric stability in calculating them. While the overall
jet simulation is high-resolution, single droplets within this dataset may only be
resolved by few cells. Especially when calculating derivatives on the velocity fields,
we have observed instabilities due to the coarse resolution. We therefore focus
on derivative-free quantities, and compute a total of eleven scalar quantities for
each temporal instance of droplet ι: volume µι, area Aι, area to volume ratio αι,
velocity ‖uι‖, momentum ‖pι‖, angular velocity ‖ωωωι‖, angular momentum ‖Lι‖,
total energy Eι, kinetic energy Eu

ι , rotational energy Eωωωι , and residual energy Eδι .
The formal definition of these quantities is provided within the appendix of this
paper (Appendix A). Notice that magnitudes are used in case of vector-valued
quantities, for ensuring rotational invariance.

Additional Quantities for Evaluation and Visualization. In addition to the main
quantities used for the further preprocessing steps, we use additional quantities
for visualization and evaluation. The polygons of PLIC surface are stored to
later visualize droplet surfaces. While we deemed derivation-based quantities
to be not numerically stable enough to be used in automatic analysis, we still
consider them useful when carefully employed in supplementing the analysis. To be
able to discern between droplets and ligaments, we compute spherical anisotropy
measure from our segmented droplets. We achieve this by computing fractional
anisotropy (Rosenberger et al., 2012; Basser and Pierpaoli, 2011) of the covariance
matrix of all cell centers comprising a droplet component ι, which we denote
cs, with cs = 0 indicating linear or planar shape, and cs = 1 for a perfectly
spherical shape of a droplet. Furthermore, we compute the radius from the smallest
surrounding sphere around the center of mass. While our main quantities above are
designed to just include droplet local quantities, for analysis purpose we include
a location-based quantities to refer to position within the jet. Next to absolute
center of mass position, we use the distance of a droplets center of mass to the
base axis of the jet and call it radius. In contrast, we do not include different
velocity components, i.e. axial and radial velocity of a droplet, because the axial
velocity is expected to roughly equal the overall velocity and the radial velocity is
assumed to be a relatively small constant only depending of the position within
the jet, as described by domain experts. In addition, the number of cells of droplet
component ι is provided as a discretized alternative to µι with two variants: (1)
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including the number of cells that are completely filled with the liquid phase and
(2) the amount of cells that are at least filled by 50%. In addition, we calculate the
vortex core lines of each droplet according to Sujudi and Haimes (1995), and count
the number of line segments to quantify the presence of a vortex. Furthermore, we
save error flags during computation process, i.e., if droplets are too small or we
cannot determine the trace of a single droplet. This can later be especially used for
filtering.

3.2 Trace Generation

From the segmented droplet instances, we now establish a space-time graph depict-
ing their temporal correspondence (i.e., a node is a droplet instance, and each edge
a temporal relationship). Initially, the graph consists only of nodes, and is extended
by adding edges if we find correspondence between droplet instances in neighboring
time steps. This is achieved by tracing imaginary particles from the center of each
cell to the next time step (Karch et al., 2018). Unfortunately, using higher order
integration schemes for this, e.g., Runge–Kutta, would require interpolation in
space and time, which is very likely to sample data from the gaseous phase and
lead to erroneous results as pointet out by Karch et al. (2018). Therefore, we are
using a forward Euler step:

x(t+∆t) := xi(t) +∆tui(t) . (1)

An edge is added if x(t + ∆t) belongs to a droplet, i.e., x(t + ∆t) is located at
time t+∆t in a cell j with a valid droplet label. We also do a backward Euler step
from the center uk of each cell k that is part of a droplet at time t+∆t:

x(t) := xk(t+∆t)−∆tuk(t+∆t) . (2)

If x(t) belongs to a droplet at time t, i.e., if x(t) is located in a cell l with a valid
droplet label at t, we add the respective edge (if not already present). If a node nj
has d > 2 at time t, and only one connected neighbor at time t−∆t, a breakup We did

not in-
troduce
valency
d, is this
some-
thing
well
known?

event has happened at node nj at time time t. If there is more than one connected
neighbor at time t−∆t, coalescence is involved. Our analysis particularly focuses
on the dynamics of single droplets (not considering splits and merges; e.g., cf. Karch
et al. (2018) for an analysis of these). Accordingly, we split the graph at nodes
where more than two edges meet—i.e. coalescence and breakup events—, and base
our approach on the isolated linear subgraphs, each of which represents the trace of
a single droplet over time. A trace contains droplet quantities as described above,
and serves as input to our regression model (Section 3.4).

3.3 Clustering

We want to cluster the droplets to reveal their different types of behavior in the
simulation. With our distribution of droplet quantities, no meaningful results could
be obtained with density-based clustering algorithms such as DBSCAN (Ester
et al., 1996) (yielding just one or two major clusters and a large number of outliers).
In contrast, hierarchical clustering according to Ward’s method (Johnson, 1967)
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has generated more expressive clusters in our experiments. However, hierarchical
clustering exhibits quadratic memory complexity. The significant part is a distance
matrix requiring (n2−n)/2 values to store. Handling our 1 000 000 droplet instances
(≈ 10 000 droplets over 100 time steps) would require at least 3.6 TB of memory
and is therefore not possible on our machine. Instead, we aim to significantly reduce
the number of data points. To achieve this, we limit ourselves for this modality
to just one aggregate of each trace. Albeit at the cost of omitting temporal
information, this is still able to serve the original purpose of identifying different
droplet types (cf. Section 5). Note that our learning-based method presented
below (Section 3.4) does not require this pre-aggregation.

3.4 Learning-Based Droplet Anomaly Detection

In our droplet anomaly approach, we first train a basic regression model on traces,
using the surrogate task of predicting future values from a preceding time window.
Assuming that the model does not overfit the training data (which we verify with
a hold-out validation), it captures the most common and predictable patterns
in droplet behavior. Then we can quickly check droplets against the model to
find ones that deviate from the typical behavior. In this work, we employ ANNs
for their ability to handle a large number of elements and learn a useful data
representation (Bengio et al., 2013).

As surrogate task for training, we define a fixed-sized input window, and slide
it along the trace, applying the model at every window position to predict the
next value in that trace. That is, given a trace of length nt, and a fixed window
size w, we obtain nt − w + 1 subtraces, and for each subtrace, the model takes
the first w − 1 time steps as input and predicts the droplet quantities at the last
(w-th) time step in the subtrace. This time-window approach has the advantages of
allowing for comparably simple models to be used (lowering costs), and especially
reducing the risk of overfitting, as shorter subtraces are less unique and harder to
“memorize”. We train a separate prediction model for each quantity to affirm that
each quantity is given the same importance, avoiding compromises in accuracy as
would be the case with multiple output variables. We split 20% of the data into
a held-out validation dataset, using the rest for training. Of course, we want the
training set so include as much data as possible, but the validation set needs to
have a reasonable size. The main purpose is to avoid overfitting, but one detail
within this step is, that the validation set needs to be a reasonable sample of the
whole dataset. Due to the nature of the dataset of containing a high amount of
relatively similar droplets, and a low amount of relatively widely spread outliers,
a validation size smaller than 20% may introduce sampling bias. Beforehand, we
normalize each quantity to have zero mean and a standard deviation of one, using
the mean and standard deviation estimated on the training set. Each model is a
fully-connected neural network with two hidden layers of 64 neurons using Rectified
Linear Unit (ReLU) (Glorot et al., 2011) activation and single linear unit in the
output layer. The models are trained using the Adam optimizer (Kingma and Ba,
2015), with a learning rate 10−5, and batch size of 32 over the course of 100 epochs
until convergence of the validation MSE loss (Figure 3). Our setup was chosen
empirically, by relying mostly on common values for most ML parameters, as our
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Fig. 3: Example of training and validation loss for the ANNs of angular momentum
and residual energy, the curves for the remaining networks have a very similar
shape.

focus is more on the overall framework. We think there might be potential for
further optimization in future work, starting with a parameter study.

Once the models have been trained, we use them to perform prediction on all
available subtraces. Note that by design the first w− 1 time steps of a trace cannot
be predicted, and have to be omitted in the following. We then simply determine
the difference between the actual and the predicted value of each quantity. In total,
this results in a 11-dimensional vector of deviations, whose Euclidean norm finally
yields total error ε—our measure of estimated droplet anomaly.

4 Visual Analytics System

Our visual analysis system has three different views: the abstract quantity rela-
tionship view, the droplet surface view, and the flow view. These components
and their interplay enables the detailed analysis of a large droplet collection by
supporting various kinds of investigation. The droplet surface view displays a set
of droplets in the 3D domain, which allows interactive exploration within spacial
and temporal context for selected droplet instances. The quantity relationship view
provides an overview on extracted droplet characteristics and supports analyzing
the interdependencies between them. Finally, the flow view can be used for the
detailed investigation of a single selected droplet using full raw input data. Different
views are linked to efficiently supplement each other. An overview of the system
can be seen in Figure 4, and the different views are described in detail below.

Droplet Surface View. The 3D droplet surface view allows a user to spatially
explore the droplet dataset (Figure 4a (iv)). Droplets of interest can be selected
directly via picking (indicated with a crosshair). As showing all droplets would lead
to significant occlusion and visual clutter, filtering the data is crucial (Figure 4a (i)).
We support filtering w.r.t. arbitrary physical or geometrical quantities, clusters,
and prediction errors (and combinations thereof). Color mapping can flexibly
depict chosen quantities, with the color-coded anomaly measure ε being the default
choice (Figure 4a (ii)). A user can navigate within the full trace of a selected
droplet and explore its temporal evolution (Figure 4a (v)). Below, similar traces are
shown that were identified via feature vector distance, i.e., by Euclidean distance
between droplet instances in the 11-dimensional quantity space. This helps, on the
one hand, to assess the uniqueness of a droplet evolution, and on the other hand
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Fig. 4: System overview: (a) 3D surface view for showing droplet surfaces, consisting
of filter panel (i), coloring tool (ii), bar chart (iii), main 3D view (iv) (here color
mapped to anomaly measure ε), time view (v) for selected droplet (crosshair in
(iv)) with temporal scrolling. The similarity search (vi) provides cases similar to
selection based on feature vector distance. In addition, we depict droplet instance
information (vii), droplet trace similarities (viii) for (vi), and spider chart as
a complement for (iii). (b) Quantity relation view: Input parallel coordinates
plot for data filtering (x), scatterplot matrix (xi) and second parallel coordinates
plot (xii) allows analysis of data, in addition any quantity can be mapped to
color. (c) A ParaView instance is integrated within the system for analysis of raw
flow field for a single selected droplet and advanced flow feature extraction. A
droplet selected in the 3D surface view can be automatically loaded into ParaView
including a useful default filter pipeline as shown within the figure.

the comparison to similar droplets can help to gain further insights into which
commonalities or differences have led to certain behavior patterns (Figure 4a (vi)).
Additionally, we also provide the values for the selected droplet in our time view with
a bar chart (Figure 4a (iii)) and a spider chart (Figure 4a (ix)), which can present
its prediction error with respect to different physical quantities. Detailed droplet
instance information (Figure 4a (vii)) and droplet trace similarities (Figure 4a (viii))
are provided as well.
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Quantity Relationship Views. The quantity relationship view is focused on display-
ing the different (abstract) droplet quantities in context with each other. Here,
we use classical information visualization methods, namely parallel coordinates
plots (PCP) and a scatterplot matrix (SPLOM) to present an overview of the
physical quantities in the dataset as well as all derived quantities (cluster, prediction
error, etc.). In detail, this view consists of three different components as shown in
Figure 4b. On top, we see the quantities of all droplets, shown within an interactive
PCP, where sliders on each axis can be used to filter the data. Positioned below
are a scatterplot matrix and a second PCP, in which we can analyze the filtered
data. We provide both SPLOM and PCP to make use of the strengths of both
visualization techniques. The PCP is ideal to get an overview of the data and
locate single data points with the overall value range context, while the SPLOM
can show pairwise relations, and is well-suited to identify patterns and relations
within the data. Naturally, highlighting data in one view also will highlight the
data in the other view. They are also linked to the droplet surface view (Figure 4a),
i.e., brushing within the SPLOM or PCP can be used to filter in the 3D surface
view. This can be useful to obtain spatial context regarding location and surface
shape to the abstract quantity data points. This component is implemented on top
of MegaMol (Gralka et al., 2019), employing OpenGL to render millions of points
and lines at highly interactive framerates.

Flow View. For an in-depth exploration of the underlying flow field, e.g., to
analyze the reason of a high anomaly, we further incorporate various classic flow
visualization techniques by directly integrating ParaView (Ayachit, 2015) into
our system (Figure 4c). ParaView is controlled from our application by loading
the droplet data of the currently selected droplet within our 3D droplet surface
view and automatically setting up the ParaView visualization pipeline. Not only
the droplet itself is exported, but its full trace (in a droplet-local coordinate
system for convenience), allowing animation. The precomputed surface and all
other quantities are provided alongside. As frontend, the user has the classical fully
functional ParaView interface.

5 Results

We will now analyze the Jet Simulation (cf. Section 1) in more detail to gain some
insights and demonstrate our methods and system in practice. From the dataset we
extracted 1 043 168 droplet instances. 273 928 were omitted due to insufficient size
(around two third of them are artifacts at the simulation boundary), some more due
to not being part of a trace with minimum length six. This results in 575 833 droplet
instances which we use in our analysis. They are organized within 23 738 unique
traces of sufficient length. These traces were split into 457 143 subtraces for training
and validation data.

We used a machine featuring an Intel Core i7-8700K, 64 GB RAM and an
NVIDIA RTX Titan. The data needed to be stored on a HDD due to its size; data
I/O is the bottleneck for many of the tasks. The computation took ≈11 hours for
segmentation (Section 3.1, CPU) and ≈25 hours for tracking (Section 3.2, CPU).
Computation of the droplet quantities took ≈9.5 hours (CPU). Trace generation and
additional data handling completed in ≈2 hours. The machine learning (Section 3.4,
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Fig. 5: Analysis of the distance between droplet and jet center (here called radius)
to velocity relationship. The top row shows the scatterplot with different selected
data points (red). The linked 3D view below provides spatial context for selection.

GPU) took ≈4 hours for the eleven ANNs, while clustering was finished in only
≈5 minutes (CPU). Our quantity view achieves more than 60 frames per second
for a single time step, and drops to around 5 frames per second when looking the
whole data at once (GPU).

5.1 Quantity Relationships

We first consider a single time step with the quantity analysis view (Figure 4b). As
the jet we are looking at is fully converged, all time steps are quite similar in terms
of general structure. The first thing we investigate is the filter PCP at the top to
get an overview of the different value ranges. One thing we notice immediately is
the huge value range of the droplet quantities due to single outliers, which leads to
the majority of droplets being squashed together for some of the quantities, for
example, this becomes quite apparent at the volume axis. We use the filter markers
on the axis to remove the single droplet with very high volume, the jet base, and
also omit droplets with an error flag for being too small—our expert specified a
threshold of ≈15 cells can show unphysical behavior—or not being part of a trace.
With the filtered data also being rescaled on each axis, and we can now see details
and structures, which are lost in the first overview PCP (and the SPLOM below).

The first noticeable correlation we see is within the distance between droplet
and jet center to velocity scatterplot (Figure 5). In particular, we identified two
main clusters which mostly are symmetric to the diagonal. One cluster with high
distance and high velocity (Figure 5a) and a second cluster with small distance and
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Velocity Magnitude [cm/s]
0 13706.9

(a) (b)

Fig. 6: (a) Inflow velocity magnitude profile at jet nozzle depicting the two-nozzle
setup. (b) Isosurface of the jet base in the first simulation time step, reflecting the
influence of the two-nozzle setup on the jet.

Fig. 7: Comparing angular velocity to
the number of vortex coreline segments
within a droplet. These two quantities
behave inversely, i.e., higher velocity
yields a lower number of coreline seg-
ments.

Fig. 8: Comparing radius of the droplet
position around the jet center to the
number of collision events in the history
of a single droplet. Highlighted (red) is
the radius range with a peak in the
number of collision events.

small velocity (Figure 5b). Furthermore, there are a few more outliers (Figure 5c).
With the first two main clusters, we can come to the conclusion, that the droplets
in the center of the jet are slower than the droplets away from the center. We
compare the scatterplots with the corresponding droplets in the 3D surface view,
to provide spatial context (Figure 5d–Figure 5f). In addition the 3D droplets are
colored by velocity using the viridis colormap. The reason for this two clusters is
that our dataset has a two-nozzle setup where we have an inner and outer zone
with different velocity at the boundary of the simulation domain. This can be
easily seen by looking at the velocity magnitudes and the surface of the jet base in
the very first time step of the simulation (Figure 6). However, it has previously
been unclear how exactly this setups affects droplet velocities further within the
simulation domain.

Next, we look at the correlation between angular velocity and the number of
vortex coreline segments (Figure 7). Originally, our hypothesis was that a high
angular velocity in the sense of rigid body rotation could be seen as a vortex,
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(a) (b) (c)

Fig. 9: Data points colored by cluster id from the 8-class hierarchical ward clustering.
(a) Position in x-direction (flow direction of the jet) compared to volume. Notice
the relation of the clusters for higher volumes. For lower volumes, clusters are not
distinguishable. (b) Comparing velocity to surface, we can see separation of clusters
in both dimensions. (c) Same holds for comparing velocity to spherical anisotropy
(anisotropy is not considered during clustering).

but in fact the plot shows exactly the opposite. We see that only droplets with a
relatively small angular velocity have a high number of vortex core line segments,
while droplets which have at least one vortex core line segment have a relatively
low angular velocity. We consider this to be an interesting finding, but were not
yet able to confirm a physical explanation for this phenomenon.

The scatterplot of the distance between droplet and jet center compared to the
number of merge events in the history of the jet also looks interesting (Figure 8).
It exhibits a triangular shape, except for a few outliers. The most inner and outer
droplets seem to have only few merge events, while there is a ring of droplets with
average distance, that appears to have a very high number of such occurrences.
We attribute this to the dual nozzle injection, where slower droplets in the inner
and faster droplets in the outer ring collide in a transition area. The peak in the
number of merge events accordingly indicates this contact area.

5.2 Clustering

The clustering results depict different characteristics (cf. Figure 9) We notice that
the volume is one of the main factors which separates these clusters. It further
shows in the middle view that the velocity is a factor orthogonal to the volume. In
Figure 9c, we can see the cluster shape also in reference to the spherical anisotropy.
This is especially remarkable because this value was not used for the clustering.
Accordingly, we assume that this is an indicator for the correlation of quantities. A
limitation may be that there is no direct physical interpretation of these clusters.
While it would be a great result if we had found one, our clustering method is
based on the trace average of the extracted quantities. This is a very simplified
projection of a droplet, probably not covering all physical laws and may not be
fully based on intrinsic physical quantities. Therefore the clusters could only have
a phenomenological interpretation by looking at the quantity distribution within
the SPLOM view as sketched by Figure 9. Nevertheless, we think these are still
structural and dynamical relevant clusters representing groups of similar droplet
behavior within the abstract quantity space.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 10: Same clusters as in Figure 9, but within the 3D surface view. (a) All
clusters in one view. (b)–(i) Each cluster on its own. Note the similarity of droplet
surface shape and size within clusters.

(a) (b) (c)

Fig. 11: (a) The comparison of angular velocity to momentum shows a trend of
data points aligning along axis. Coloring by prediction anomaly seems to correlate
with outliers of this trend. (b) Zoom to bottom left of (a). Selected (red) is the data
point with the highest anomaly in this range. (c) 3D surface view of the selected
droplet in (b). We can see this droplet is cut by the domain boundary. This implies
to be the source for this droplet being an anomaly.

Looking at the 3D surface view, we find that each cluster has similar droplets
in reference to its shape and size (Figure 10). Overall this clustering gives us an
overview of the different types of droplets within this dataset. It provides additional
information to statistical quantity value distribution, for example within the PCP
view, by addressing higher order connection in the high dimensional space of the
quantity values. However, remember that we neglect temporal effects as we averaged
traces prior to clustering (cf. Section 3.3).

5.3 Droplet Anomaly-Guided Analysis

Finally, we analyze the results based on prediction anomaly. In Figure 11a, we
see correlation between the angular velocity and the momentum, with most data
points being close to the axis. That means a droplet generally exhibit high velocity
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or high momentum, but not both. By coloring the data points by the error of the
trace prediction, we see that the further droplets are away from this trend along
the axis, the higher is the prediction error. Bottom left, we see a dense region with
mostly low anomaly droplets. Zooming reveals a few droplets with high anomaly,
which attract our attention (Figure 11b). Using brushing on the highest anomaly
data point in this region (marked red) and observing it in the linked 3D surface
and flow view, we see that this droplet is located at the boundary of the domain.
The identification of such problematic cases is important for studying edge cases
in the simulation and to discard them from further consideration.

Figure 4a shows the 3D surface view depicting the full time step 410. Color
depicts our anomaly estimation ε, with higher anomaly indicated by reddish colors
and lower anomaly by yellowish ones. Gray indicates droplet instances that are
within the w − 1 first time steps of a trace, and thus do not provide prediction
nor anomaly information ε (this always applies to the jet itself, it is always at the
beginning of the main trace due to droplets splitting from it continuously). To
reduce occlusion and clutter, a typical first step is to omit those structures, which
can be accomplished by requiring ε ≥ 0, because ε is set to a negative constant
in our implementation, if no ε value can be computed (cf. Figure 12a). Here, we
observe that ligaments, i.e., the elongated droplets that typically breakup into
smaller droplets later on, exhibit very high ε, i.e., they show temporal behavior
that strongly deviates from the trends of the majority of the droplets. We also
note that the structures with the highest ε are typically tiny droplets (Figure 13),
which led us to the hypothesis that the quantities that we computed suffered from
discretization artifacts for small droplets, even if they are still bigger than the
required minimum size originally indicated by our domain scientist. In particular,
such droplets tend to exhibit alternating ε, switching between high and low values
at high temporal frequency, which supports our hypothesis of discretization issues
due to insufficient resolution. In fact, we also observed such alternating behavior
of ε for very thin ligaments. As a result, we do not consider very small droplets
nor ligaments with this analysis component in the following. To accomplish this,
we filter by spherical anisotropy cs, requiring cs > 0.4 in this case. Additionally,
we suppress all droplets with low anomaly by adjusting our filter to ε ≥ 0.15. To
obtain a better space-time overview, we now enable the simultaneous display of
all time steps with the chosen filtering criteria, leading to Figure 12b. This way,
we observe many long traces in the 3D surface view, which provides the point of
origin for our further investigations.

We now pick a trace with particularly high anomaly estimation (selection
indicated by black cross in Figure 12a). A closer inspection of that trace in the
time-view (Figure 4a (v)) reveals that the droplet becomes rounder over time, and
that the anomaly indicator ε stays almost constant over time. This is an observation
that turned out to be quite rare, since typically the anomaly measure reduces
quite quickly, in particular if the respective droplet becomes roundish. A thorough
investigation of the respective plots of the original traces, as well as the individual
deviations of the predicted quantities from the original ones, did not provide insights
on the causes of this behavior. We started to hypothesize that the internal flow
within the droplet might provide insights. We thus initiated flow visualization of
the liquid phase of the droplet (Figure 14) (left). Please notice that we use linear
mapping of velocity magnitude to glyph color, but logarithmic mapping of velocity
magnitude to glyph size within Figure 14 and following. Interestingly, we observed
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(a)

(b)

Fig. 12: Exploration of the dataset within the 3D surface view (c.f. Figure 4a (iv)).
After loading the dataset the time filter is set to show only a single time step
and a second filter omits all droplet instances that lack total error (our anomaly
indicator) ε, leading to the view in (a). The user now selects a droplet of interest for
further analysis (black cross), here the droplet shown in Figure 14 (left) is selected.
(b) provides a further example. Now the time filter is set to aggregate all timesteps
of the dataset, leading to dotted line like structures showing the same droplet over
time. To reduce visual clutter further filters are used to only show droplets with
anomaly measure ε > 0.15 and for suppressing ligaments by requiring spherical
anisotropy cs > 0.4. Here the droplet in Figure 15 is selected.

a distinguished and strong saddle-type flow pattern in the internal flow, in the
frame of reference moving with the velocity of the center of mass of the droplet. We
investigated other cases with high anomaly measure ε, either by direct selection in
the 3D view, or by means of our similarity search, as provided in the lower half of
our tool. Interestingly, most cases of non-ligament (more or less roundish) droplets
with high ε turned out to exhibit such saddle-type flow patterns in their interior,
including the case shown in Figure 14 (right), found as most similar to that droplet
by similarity search.

This motivated us to investigate droplets with different anomaly behavior.
While decaying ε is quite common, we wanted to have a look at droplets for which ε
increases over time. The hypothesis behind this reasoning is that anomalous droplet
behavior is often caused by a collision of droplets, but while the products of the
collision move over time, they tend to “calm down” and become better predictable
by our regression approach, and thus ε decays. In Figure 12b, we were able to
identify such a droplet, selecting it by picking, and investigate its temporal behavior
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(a) (b) (c) (d) (e)

Fig. 13: Droplet exhibiting the highest anomaly. Structures with highest anomaly
measure ε are tiny droplets whose quantity computation apparently suffers from
discretization issues. In (b) the collision with a smaller droplet artifact can be
observed, which was missed by the trace generation (c.f. Section 3.2). Further due
to the nature of PLIC, the strongly discontinuous surface reconstruction can be
seen in the form of gaps (c.f. Section 3.1). Successive time steps (a)–(e) exhibit
alternating behavior of ε, supporting the hypothesis of insufficient resolution of
the simulation grid.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

High Anomaly Droplet case.

(k) (l) (m) (n) (o)

(p) (q) (r) (s) (t)

High Anomaly Droplet II case.

Fig. 14: Left: Selected droplet from Figure 12a. We found that droplets with low
temporal decay of ε exhibit distinguished saddle-type flow patterns in their interior
flow, in frame of reference moving with the center of mass of the droplet. Right:
This is the droplet found most similar by similarity search in Figure 4a.

in the time view. Detailed flow analysis is shown in Figure 15. Interestingly, this
droplet has been the only one we could find with a strong vortex in its interior.

Finally, for comparison and validation of the utility of our anomaly estimation,
we investigated droplets with low anomaly measure ε. We selected them either by
direct picking, or by similarity search. The majority of droplets with low ε exhibit
shear flow in its interior, as shown in Figure 16 (left). We were able to find only one
case with deviating flow pattern. This droplet (Figure 16) (right) exhibits a “half”
saddle-type flow pattern (imagine splitting a 3D saddle along its 2D manifold) but
with low flow velocity in the frame of reference moving with the observer.

6 Discussion and Future Work

We developed a visual analysis approach for investigating droplet characteristics and
behaviors occurring in large ensembles like sprays. It allows the exploration of what
originally are terabytes of simulation data depicting complex small-scale effects with
a multi-stage workflow. On the one hand, we reduced the data by extracting droplet
surfaces and physical quantities. This allowed to give an overview and investigate
large numbers of droplets at once during interactive exploration. The physical
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Fig. 15: Increasing Anomaly Droplet case. The very rare case of temporally
increasing ε brought our attention to this case, which, in frame of reference moving
with the center of mass of the droplet, exhibits a strong vortex in its interior flow.
This droplet has been the only one we could identify to contain a vortex.

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Low Anomaly Shear case.

(k) (l) (m) (n) (o)

(p) (q) (r) (s) (t)

Low Anomaly Half-Saddle case.

Fig. 16: Left: Droplets with low anomaly measure ε generally exhibit shear flow
patterns in their interior, in frame of reference moving with the center of mass of
the droplet. Right: Only identified exception to our hypothesis, that low anomaly
droplets exhibit shear flow patterns in the interior. This droplet exhibits a weak
“half-saddle” pattern, i.e., half of a 3D saddle, similar to a detachment point in its
interior, in frame of reference moving with the droplet.

quantities were further used in advanced analysis steps to (1) get an overview on
different kinds of droplets via clustering (where we introduced a domain-specific
optimization to be able to handle a large number of droplets), and (2) identify
droplets with irregular temporal behavior by adapting a recent machine learning-
based method. On the other hand, the full original data was still available for the
detailed investigation of selected cases. We integrated different analysis components
to be able to provide the user with the full breadth of required interactive analysis
functionality from investigating relationships of extracted physical quantities,
droplet traces and results from clustering and ML-based analysis to a spatial
overview, and finally a direct link to ParaView supporting advanced flow analysis
for the detailed investigation of selected droplets.
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So far, we applied our tool to gain insights from a single large-scale direct
numerical simulation datasets of two-phase flow of non-Newtonian jets. However,
we believe our approach directly generalizes to different simulations of this kind.
We have chosen basic physical quantities which are based on raw simulation data
from the VOF method (and accordingly will be available from nearly all VOF
based simulations). Depending on the simulation results, the list of properties could
be extended, e.g., if pressure is available, or a higher resolution allows for precise
calculation of deviation-based quantities.

We would generally expect the ANN-based anomaly detection to work likewise
for other data. However, as our prediction is based on traces, we need a certain
temporal resolution, especially some highly caotic datasets might be problematic,
where splits and merges happen in nearly every timestep for each droplet. That
being said, we generally consider jets to be already among the more difficult real-
world examples. However, the trace aggregation approach we use to enable the
use of hierarchical clustering might not adequately transfer to different examples.
While the representation of traces by means of aggregates proved useful in our
analysis scenario, more elaborate, adaptive approaches are potentially required in
other contexts.

In future work, we aim to study additional variants of jets, and beyond this
we will explore possibilities to generalize our technique for types of simulation
data in which large amounts of small entities need to be investigated. We plan to
further incorporate split and merge events to better understand the atomization
process. While we already collect the number of these events along the full history
of a droplet, we additionally aim to integrate a graph view in our tool (enriched
with our extracted quantities) and to extend our ML-based anomaly detection to
explicitly consider split and merge events. Finally, a main goal would be to allow a
user to directly influence our clustering and machine learning component during
interactive analysis with respect to specified subsets or partitions of the data.
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A Appendix

A.1 Definition of Physically Motivated Quantities

Droplet Volume. We compute the volume of each droplet by integrating the f -field. That
is, the volume µι of the droplet with identifier ι is obtained by integrating the product of the
f -field and the cell volume for all cells i where li = ι:

µι :=
∑
i∈Cι

fiµi , (3)

with Cι := {j | lj = ι}, and µi being the volume of cell i.

Droplet Area to Volume Ratio. As motivated above, we compute the area Aι of
droplet ι by integrating the area of the respective PLIC patches, i.e.,

Aι :=
∑
i∈Cι

Ai , (4)

with Ai being the area of the PLIC patch in cell i, i.e., Ai = 0 if fi = 0 or fi = 1. From that,
we compute the area to volume ratio αι Karch et al. (2018) of the droplet as

αι :=
Aι

µι

rs

3
, (5)

with rs := 3
√

(3µι)/(4π) being the radius of a sphere with volume µι.

Droplet Velocity and Momentum. The velocity of the center of mass of droplet ι
follows to be

uι :=
1

µι

∑
i∈Cι

miui , (6)

with cell-based flow velocity ui in cell i, and mi := fiµi. From that, the droplet’s momentum
computes

pι := µιuι . (7)

Notice that we assume the density of the liquid to be 1, because the density is often not provided
explicitly for the liquid phase in two-phase simulations (as in our case), and since density
represents only a scaling factor (note that liquids are generally treated as being incompressible).
As a consequence, the total mass of droplet ι equals its volume µι.

Auxiliary Measures. A common measure in astrophysics and particle systems is the center
of mass. It provides a frame of reference and enables the computation of derived quantities.
The center of mass xι of droplet ι computes

xι :=
1

µι

∑
i∈Cι

mixi , (8)

with xi being the center of cell i.
From that, it is a common step to compute the total angular momentum for a set of

particles, resulting in our case in the angular momentum Lι of the droplet:

Lι :=
∑
i∈Cι

x̂i ×miui , (9)

with x̂i := xi−xι being the center of cell i relative to xι. Notice that, for the example of particle
systems, this total angular momentum describes the rotational motion of the “rigid-body aspect”
of the particle set, or in other words, the rotational motion of the entirety of the particles.
Thus, in our context, it represents the “rigid-body rotation component” of the droplet in terms
of the flow of the liquid.
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In analogy, the droplet’s inertia tensor Θι computes

Θι :=

∑
imi(ŷ

2
i + ẑ2i ) −

∑
imiŷix̂i −

∑
imiẑix̂i

−
∑
imix̂iŷi

∑
imi(x̂

2
i + ẑ2i ) −

∑
imiẑiŷi

−
∑
imix̂iẑi −

∑
imiŷiẑi

∑
imi(x̂

2
i + ŷ2i )

 , (10)

with x̂i =: (x̂i, ŷi, ẑi)
> and i ∈ Cι. From that, the angular velocity ωωωι of droplet ι is obtained

by

ωωωι = Θ
−1
ι Lι . (11)

Notice that Θι can become singular for very small droplets, and this is one of the reasons why
we exclude such very small droplets from our analysis.

Total Droplet Energy. The total energy Eι of droplet ι (notice that the addressed
simulations exclude thermodynamical and chemical processes) computes

Eι :=
∑
i∈Cι

1

2
miu

2
i . (12)

This total energy can be decomposed into kinetic Eu
ι , rotational Eωωωι , and residual energy Eδι :

Eι = Eu
ι + Eωωωι + Eδι , (13)

as explained next.

Kinetic Droplet Energy. The kinetic energy Eu
ι of droplet ι with respect to its velocity uι

is

Eu
ι :=

1

2
µιu

2
ι . (14)

This measure represents the kinetic energy of the rigid-body property of the liquid component
representing a droplet.

Rotational Droplet Energy. The rotational energy Eωωωι of droplet ι computes

Eωωωι :=
1

2
ωωω>ι Θιωωωι . (15)

This rotational energy captures the rigid-body part of the liquid dynamics of the droplet with
respect to rotational motion.

Residual Droplet Energy. The residual energy Eδι of droplet ι finally computes

Eδι := Eι − Eu
ι − Eω

ωω
ι , (16)

and includes deformation of the droplet, as well as non-rigid flow in its interior. In that sense, Eδι
captures the deviations of a droplet’s flow from rigid-body dynamics. Due to limited numerical
accuracy, Eδι can turn out to be slightly negative, in which case we clamp it to zero and set
Eωωωι := Eι − Eu

ι .
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