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Figure 1: Layered set intersection graphs on sample data about types of products (sets) made by companies (set elements). Each color
represents a set, while their combinations identify set intersections. Filled black circles show membership of elements. The visualization can
show (a) aggregated or individual static set intersection graphs and (b) differences in set intersection graphs between any two timesteps.

Abstract
Challenges in set visualization include representing overlaps among sets, changes in their membership, and details of con-
stituent elements. We present a visualization technique that addresses these challenges. The approach uses set intersection
graphs that explicitly visualize each set intersection as a rectangular node and elements as circles inside them. We represent the
graph as a layered node-link diagram using colors to indicate the sets. The layers reflect different levels of intersections, from
the base sets in the lowest layer to potentially the intersection of all sets in the highest layer. We provide different perspectives
to show temporal changes in set membership. Graphs for individual, two, and all timesteps are visualized in static, diff, and
aggregated views. Together with linked views and filters, the technique supports the detailed exploration of dynamic set data. We
demonstrate the effectiveness of the proposed approach by discussing two application examples. The submitted supplemental
material contains a video showing proposed interactions in the implementation and the prototype itself.

1. Introduction

Datasets usually contain data items that belong in multiple cate-
gories. Modeling categories as sets and data items as elements has
helped in the visual analysis of these datasets. A large number of
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existing static set visualization techniques [AMA*16] stand testi-
mony to the statement. However, we still lack techniques which:
(a) model and visualize the details of element memberships in a
static set (e.g., element-set membership weight) and (b) represent
temporal changes in element memberships. In this paper, we pro-
pose an approach that addresses these challenges.

Many real world scenarios can be modeled as dynamic sets. For
instance, we can see the business strategy of companies by analyz-
ing the temporal change of their product lines. Figure 1 visualizes a
sample dataset where product categories are modeled as sets, while
companies are set elements. If a company makes a particular type
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of product, then it belongs to the corresponding set. The dataset
contains information of 13 companies that make products across
three categories over three decades (each decade is a timestep).

Our approach centers on a layered set intersection graph, where
each node represents a base set or an intersection of base sets, and
edges represent direct subset relationships. Sets are shown as rect-
angles with their elements (circles) inside them. Nodes in layer n
represent the intersections of n base sets, e.g., Gaming Console ∩
Search Engine ∩ Operating System is in layer L3 in Figure 1.

Representatives of an element appear in multiple nodes if being
part of multiple sets and intersections. The degree of an element is
the number of base sets it belongs to. An element is exclusive to a
base set if it does not belong to any other set. More generally, an
element is exclusive to an intersection if its degree is the number
of base sets of the intersection, i.e., if the element does not belong
to any set besides those in the intersection. We mark exclusive ele-
ments with a hat. These elements do not appear in any layer above.

We compute a set intersection graph for each timestep. The
graphs are visualized individually or summarized by an aggregated
representation across all timesteps (Figure 1a). A diff view can
show the exact changes between any two timesteps. For instance,
in Figure 1b, Google is highlighted, and a tapered directed edge
shows that the strategy of the company shifted in the 2010s from
2000s to producing both Search Engine and Operating System.
The vertical layout of layers allows us to see the trajectory of indi-
vidual elements over time, from ‘specialists’ (belonging to one set)
to ‘generalists’ (belonging to multiple sets) or vice versa. To enable
in-depth exploration, we integrate filters for querying, a navigable
timeline, a chart showing degree distribution, and an element list.

Our contribution is a novel application-independent visualiza-
tion technique for analysis of membership details in overlapping
sets and temporal changes in set membership (Section 4). To the
best of our knowledge, this is the first technique to allow a rich
analysis of evolving sets at the level of individual elements. Two ap-
plication examples demonstrate the effectiveness and generality of
the proposed approach (Section 5). We implemented the approach
as a Web-based prototype†. The supplemental material [Aga20] in-
cludes a video demonstration of the system and the prototype itself.

2. Related Work

As surveyed by Alsallakh et al. [AMA*16], there exist various set
visualization techniques, with different foci and layouts. First, we
discuss static set visualization techniques that are most relevant to
our work, thereby leaving out a comprehensive survey.

Graph-based techniques represent elements and sets as nodes of
a bipartite graph connected by edges (to indicate set membership),
either with separate areas for element and set nodes [DHRD12;
SJUS08; SGL08] or within a shared space [BH11; Mis06]. Ana-
lyzing an overlap becomes difficult in both layouts, as it has to be
inferred by following the individual edges and finding all element
nodes contained in the overlap. RadialSets [AAMH13] addresses

† Hosted at: https://vis-tools.paluno.uni-due.de/dsv/

this by representing only sets and their intersections as nodes. How-
ever, elements are aggregated within each node, which hides mem-
bership details of elements. Additionally, intersections of over four
base sets are not shown in the visualization. UpSet [LGS*14] uses
a matrix layout where each row represents an overlap. Hence, ana-
lyzing a specific overlap becomes easy. However, the technique ag-
gregates the elements and focuses on showing the cardinality and
additional attributes of elements in each set and their overlaps.

Aggregating elements of a set significantly increases the scal-
ability. However, it does not allow the analysis of those scenarios,
where set elements differ from each other (e.g., when they have dif-
ferent weights of membership in the same set), which is common in
real world scenarios. For instance, the importance (weight of mem-
bership) of a text keyword (element) in a corpus (set) is encoded
via font size in Parallel Tag Clouds [CVW09]. However, they do
not mark whether the elements are present in additional sets or not
(exclusivity). In our approach, we address the challenge of visualiz-
ing differences between elements in terms of their set membership
weights and their exclusivity.

Formal concept analysis (FCA) [GW12; SKG16] is used to find
and group equivalent elements and results in a concept lattice. A
concept represents which elements (in the example: companies) are
associated with which sets (the type of products manufactured).
Subset relations between concepts gives a hierarchical structure
to the lattice. These lattices have been visualized in various ways
and found to be effective [GEF17; WYS09; EV10; MMLA12;
VGRH03; EDB04]. We take inspiration from these techniques and
propose a layered graph-based representation.

There exist only a few approaches that have partly addressed the
challenge of visualizing dynamic sets. Set Streams [AB20] rep-
resents sets and their non-empty intersections as individual rows
while showing the changing memberships of elements as streams
in a horizontal layout. However, since elements are aggregated, it
does not show details of the membership for each element. Time-
Sets [NXWW16] visualize sets of events on a timeline. An event
has a timespan, modeled as an element, and may belong to more
than one set. However, the set membership of elements (events)
does not change over time. Another technique shows the change
in membership of elements but restricts them to belong to only
one set in a timestep [vBA*12]. Valdivia et al. [VBP*20] show the
dynamic changes as a hypergraph—hyperedge connecting several
vertices. However, set intersections are not shown explicitly, and
they have to be inferred by following a hyperedge. The animation
based approach of Mizuno et al. [MWTI19] optimizes the sequence
of dynamic changes in a node-link based set representation. How-
ever, with animation, it becomes difficult to keep track of all the
changes happening to multiple elements and sets.

Our approach is more general (an element can be in multiple sets
at any time and in different sets over time) and simpler (we show
set membership changes without using animation).

3. Set Intersection Graph

To provide an intuitive understanding of our approach, Figure 2
shows its equivalence with a Venn diagram. To explicitly represent
all set overlaps, we construct a static set intersection graph for each
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Figure 2: The sample dataset for one timestep (2010s) with 3 types of products as sets (encoded with colors) and companies as elements,
based on the type of products they manufacture. (a) The raw data. (b) The data in a Venn diagram. (c) The constructed set intersection graph.
(d) Our visualization approach representing layered set intersection graph. Element Zeebo Inc is highlighted in all representations. A hat
marker ( ) indicates the exclusive presence of an element–it does not belong to any other base set.

timestep (Figure 2c). As shown in Figure 2d, we visualize each set
and intersection (graph node) by a rectangle and elements of that
set as black circles inside the rectangle.

Our set intersection graphs are inspired by concept lattices used
in FCA. The top concept of the lattice (topmost node in the graph
shown in Figure 2c) has those elements that are present in all sets;
the bottom concept has those elements that do not belong to any set.
For most realistic datasets, this concept is empty and thus not visu-
alized in Figure 2c. The video in the supplemental material [Aga20]
shows an animation of Figure 2 to further help understand the con-
struction and visualization of the layered set intersection graph.

3.1. Data Model

The input for our visualization approach is a non-empty set of m
elements E = {e1,e2, . . . ,em} and a family of n base sets F =
{S1,S2, . . . ,Sn} such that Si ⊆ E. Each element can belong to one
or more base sets, which undergoes discrete temporal changes. We
represent the time dimension as an ordered sequence of p timesteps
T = 〈t1, t2, . . . , tp〉 (∀k < k′ : tk < tk′ ). Depending on the application,
the timesteps can be interpreted as snapshots or time ranges.

An m× n matrix W k contains the data for timestep tk where
rows represent elements (|E|= m) and columns represent base sets
(|F| = n). If cell wk

i j > 0, then element ei is in base set S j. The
value of the cell determines the element’s weight of membership
in that set. If there is no meaningful weight definition for a certain
application, a binary value is sufficient (e.g., wk

i j ∈ {0,1}).

3.2. Set Intersection Graphs

We construct a graph where every node represents a subset of F and
contains as elements the intersection of elements of those base sets,
e.g., the node for X = {S1,S3,S4} contains the elements in S1 ∩
S3∩S4. We include all nodes in the graph that result in non-empty
intersections (including a node for each base set, but excluding a

node for ∅ ⊂ F). We add an edge between nodes Xi and X j if the
former is a direct subset of the latter, i.e., Xi∪{Sk}= X j with Sk ∈
F .

The membership weight of an element ei in node X = {S j} at
timestep tk is given by wk

i j. For a set intersection, a weight has to
be computed. We chose to sum up the element’s weights of mem-
berships across all the base sets in X . Formally, the weight of an
element ei in a vertex X at timestep tk is computed as:

W
′
(ei,X , tk) = ∑wk

i j, ∀S j ∈ X (Equation 1)

For instance, if an element is in base sets S2 and S4 with weights 1
and 2, it is in S2 ∩ S4 with weight 3. We repeat the process to get
set intersection graphs (G1,G2, ...,Gp), one per timestep.

3.3. Aggregated Set Intersection Graph

To compute the fixed layout across all timesteps, we build a super-
graph [BBDW17] by merging the set intersection graphs of all
timesteps. The super-graph nodes are formed by merging equiva-
lent nodes across all set intersection graphs. Nodes from the set
intersection graphs for timesteps tk and tk′ are equivalent if they
represent the same subset of F , i.e., Xk

i = Xk′
i′ . Edges that connect

equivalent nodes at different timesteps are merged accordingly:

(Xk
i ,X

k
j )≡ (Xk′

i′ ,X
k′
j′ )⇔ Xk

i ≡ Xk′
i′ ∧Xk

j ≡ Xk′
j′

Hence, the resulting super-graph contains all nodes or edges that
are present in at least one timestep, with equivalent nodes and edges
contained only once (no replication).

4. Our Visualization Approach

In our approach, we compute a layered layout of set intersec-
tion graphs (Section 4.1). The membership of elements in individ-
ual timesteps is visualized through static set representation (Sec-
tion 4.2). An aggregated representation provides an overview of the
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Figure 3: The interface of the proposed visualization technique with: (a) a set intersection view in the middle (here, showing an aggregated
representation), (b) a timeline view with cardinality distribution of base sets in each timestep and relevant statistics for diff representations,
(c) applied filters, (d) a list of elements, and (e) degree distribution. The dataset shows research areas in Computer Science as sets (encoded
in colors), researchers as set elements, and the number of publications in the respective area as element-set weight. The evolution chart of
two selected researchers is shown in b1 for later discussion (Section 5.1).

temporal changes (Section 4.3). Changes across any two selected
timesteps are visualized by a diff view (Section 4.4). Interactive fil-
tering and linked views (Section 4.5) enable an in-depth exploration
of the set data. Figure 3 shows the prototype’s interface.

4.1. Layered Layout of Set Intersection Graphs

To maintain stability while flipping through graphs of different
timesteps, equivalent nodes (sets) should retain their position as it
helps to maintain a mental map of the graphs [BBDW17]. We use
aggregated set intersection graphs for a global layout as it contains
all nodes and edges that appear in at least one timestep. We com-
pute a fixed spatial position for each node in the graph. This results
in a stable and global layout of the graph.

The placement of nodes and links in the aggregated graph
follows a layered graph layout based on the Sugiyama algo-
rithm [STT81]. Since a subset relation, as represented by edges,
cannot form cycles, the cycle removal step of the Sugiyama algo-
rithm is skipped. Furthermore, we replace the topology-based layer
computation by placing the nodes (intersections) in layers based on
the number of participating sets in an intersection. Doing so gives
semantics to the layers: a layer Lk contains only k-set intersections.
For instance, a node representing [Gaming Console ∩ Search En-
gine ∩ Operating System] is assigned to L3 (Figure 2d top). All
nodes are ordered within layers according to the barycentric heuris-
tic to minimize edge crossings.

4.2. Static Set Representation

We visualize the nodes of the set intersection graph as rectangles.
Small colored boxes identify the participating sets in an intersec-
tion ( = Search Engine ∩ Operating System). Elements
belonging to an intersection are shown as circles inside the corre-
sponding rectangle. We chose a circular shape because it can be
divided into two distinguishable regions (semi-circles) required for
the diff representation (Section 4.4). The area of a circle encodes
the corresponding element’s weight of membership (Equation 1).

Exclusive elements are marked with a hat ( ) on top of the cor-
responding circles, indicating the highest layer in which an element
is present (as the element does not have additional memberships).
All circles inside a rectangle are ordered by their type (exclusive
and non-exclusive). Within each type, elements are sorted by their
decreasing membership weight. Such a representation enables us
to see the distribution of elements within a set. Other criteria pro-
vided include sorting elements by their weight or name (Figure 3a
bottom). The height of a node (rectangular box) indicates the cardi-
nality of the corresponding intersection. We show the exact cardi-
nality as a number centered at the bottom of the node. The number
of exclusive and non-exclusive elements is visualized by horizontal
bars below the node (Figure 3a1).
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4.3. Aggregated Set Representation

To show an overview of temporal changes in set memberships
across all timesteps, we provide a time aggregated set represen-
tation. We average the weights of each element individually across
all timesteps in individual sets and intersections, which is encoded
via the area of corresponding circles (Figure 3a1). We keep the vi-
sual representation similar to static sets to minimize the need for
memorizing additional visual encodings. The aggregated set rep-
resentation (Figure 3a1) uses opacity to encode the percentage of
timesteps a certain visual element (i.e., a set, an element) is present;
low opacity (gray) encodes a low percentage while high opacity
(black) indicates that the visual element is present at all timesteps.
For elements, filled circles in the aggregated set have varying opac-
ity. Similarly, for a set, the left edge of the corresponding rectan-
gular box is thickened and filled with the computed opacity level.
In Figure 3a1, the rectangle representing Graphics/Vis./HCI has
a black thick left edge, which means the set was present in every
timestep (had at least one element in every timestep).

The percentage of timesteps and average weights can be re-
trieved interactively on demand (on hovering), as shown in Fig-
ure 3a1. Elements can gain or lose membership in sets over time.
An element’s maximum degree over time is marked with a hat
marker in the rectangle(s) representing the corresponding set or
their intersection(s). For instance, in Figure 3a1, the highlighted
circle shows researcher M. Eduard Gröller published an average
of 6.5 articles per timestep within the field of Graphics/Vis./HCI
in 80% of the timesteps. The hat marker shows that the researcher
never published in any other field together with Graphics/Vis./HCI
in the same timestep.

4.4. Diff Representation

Explicitly pointing out differences between two timesteps of a dy-
namic graph helps in analyzing changes [APP11; RM13; RF14;
ZKS11]. Likewise, we propose a diff view to represent exact
changes in sets between any two timesteps. We divide the visual el-
ements vertically into two parts. The left half shows data of the ear-
lier timestep (tk) while the right half shows data of the later timestep
(tk′ where k < k′). A circle (element) is divided into two halves (left
and right semi-circles), to indicate its presence in two timesteps, as
shown in Figure 4a. Similarly, hat markers are also vertically di-
vided into two arcs, showing the maximum degree of an element in
the two timesteps. Likewise, the set cardinalities at two timesteps
are shown near the bottom left and bottom right corners of the cor-
responding rectangular box (Figure 4d). After experimenting with
several designs, we finally chose to display rectangular boxes in the
diff view with different stroke patterns to represent their existence
only in tk with a dotted border, only in tk′ with a dashed border, and
in both timesteps with a continuous border (Figure 4a).

We show membership changes with tapered edges, which are
available on-demand to reduce clutter. As shown in Figure 4b, a
tapered edge highlights the shift in the element’s membership from
Search Engine to Operating System. The tapered edge shown in
the figure is horizontal. If the element’s degree (number of base
sets it belongs to) changes across two timesteps, the tapered edge
is drawn between two layers. As shown in Figure 1b, the inter-
layer tapered edge shows that Google gained membership of the
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Figure 4: Diff between t1 and t2 showing: (a) visual encodings
for elements (circles) and sets (rectangles), (b) change in set mem-
bership by tapered edge, (c) group of elements undergoing similar
changes by summary edges, and (d) diff view of set Search Engine
with annotations.

Operating System set at a later timestep. Summary edges abstract
tapered edges with the same source and destination layers and show
the number of elements inside a circular base at the origin. For
instance, from Figure 4c we can infer that five elements with degree
1 (source is L1) in t1 gained membership in two additional sets in
t2 because their degree became 3 (destination is L3).

Three cases arise based on the presence of elements and exis-
tence of sets in two timesteps: (i) present only in the earlier timestep
(tk), (ii) only in the later timestep (tk′ ), and (iii) present in both
timesteps. These cases are distinguishable through our chosen en-
codings, as shown in Figure 4a. For each set, the number of ele-
ments in the three cases is visualized by horizontal bars beneath
the corresponding rectangular boxes (Figure 4d). Inside a rectan-
gular box, the elements are primarily ordered by the three cases,
while secondary ordering is on their weight of membership.

4.5. Linked Views, Filters, and Interactions

Besides the set intersection view given by the layered graph, we
integrate other views to visualize details of set data, provide filters
and interactions supporting in-depth visual analysis. The video in
supplemental material [Aga20] shows the working of linked views,
filters, and interactions in action.

A Timeline shows all the labeled timesteps ordered chronologi-
cally and drawn in a horizontal layout (Figure 3b). Small rectangles
above each timestep label contain colored vertical bars to indicate
the cardinality of base sets. The ability to select the timesteps al-
lows easy navigation between different timesteps. Keyboard nav-
igation with arrow keys is also supported. Temporal aggregation
can be done by clicking the ‘Aggregate all’ button. The selection
of two timesteps for diff view requires clicking any two timesteps
while holding the Ctrl key. Additionally, the diff view between ad-
jacent timesteps can be retrieved by selecting the rectangles in the
‘Diffs’ row above. Each rectangle in the row contains three hori-
zontal bars showing the number of elements present: only in the
left timestep, only in the right timestep, and in both timesteps.

An Evolution Chart of an element is a series of rectangles in a

c© 2020 The Author(s)
Eurographics Proceedings c© 2020 The Eurographics Association.



S. Agarwal et al. / Visualizing Sets and Changes in Membership Using Layered Set Intersection Graphs

row placed below the timestep labels (Figure 3b1). Each rectangle
shows an element’s weight of membership in sets for one timestep,
encoded as horizontal bars. With this representation, the evolution
chart enables a comparison between elements. It is drawn on de-
mand when an element is selected (Figure 8).

An Element List shows a list of elements as rows (after applying
current filters) on the right side of the interface (Figure 3d). Each
row in the list represents one element with additional details: name
of the element, the sum of its membership weights in all sets among
selected timestep(s), and a timeline showing a temporal variation of
its cumulative membership weights ( ). The ver-
tical dashed line in the timeline marks the timestep when the ele-
ment first appeared. In the static view, colored boxes in each row
indicate the membership of an element in the corresponding sets
( ). In the diff view, each box is subdivided ver-
tically into two halves ( ) and filled according to
the presence of the element in the corresponding sets across two
timesteps. Whereas in the aggregated view, the opacity of color in-
dicates the percentage of timesteps the element is present in the
corresponding base set ( ). Clicking on a row
selects the element, highlights it in the set intersection view, and
draws its evolution chart.

The Degree Distribution Chart shows a distribution of filtered
elements in terms of the degree of individual elements (Figure 3e).
Existing visualizations such as RadialSets [AAMH13] have shown
the usefulness of degree distributions in the analysis of set data. In
the diff view, each degree bar is vertically split into two bars, one
for each timestep.

Filters: The ability to query and filter a group of elements based
on visual selection is a powerful way to analyze sets. We inte-
grate a mechanism where a user can simultaneously select: (i)
timesteps, (ii) sets and intersections, (iii) summary edges, and (iv)
degree of elements. Each selection acts as a filter that returns a
group of elements fulfilling the selected criteria. We represent fil-
ters with tags (e.g., , , , and

) above the set intersection view (Figure 3c).

Other Interactions: The set intersection view (Figure 3a) sup-
ports panning and zooming. Hovering over any element shows con-
necting edges between the related sets and intersections. The ele-
ment is selected when its circle or semi-circle is clicked. The se-
lection stays persistent when selecting another timestep or view
(static, aggregate, and diff ). With this feature, one can trace an el-
ement across different timesteps when flipping through diff views.

5. Application Examples

To demonstrate the applicability and effectiveness of our approach,
we study two realistic application examples. The prototype con-
taining these examples is in the supplemental material [Aga20].

5.1. Researchers’ Field of Interest

Publication venues (conferences, journals, etc.) can be mapped to
fields of science, fields can be modeled as sets, and researchers as
set elements. Publication by a researcher in a field of science de-
termines the set membership. The publication year adds the tempo-
ral component. We collected publication data from conferences of

6 research fields (sets). We filter those researchers who published
at least 30 articles over all fields and timesteps, obtaining 498 re-
searchers. Since researchers can publish in multiple fields, they can
appear in multiple sets. Hence, the six sets overlap, with 32 differ-
ent set intersections. The dataset covers publications during 1990–
2019, divided into ten timesteps of three years each.

We first discuss observations derived from the last timestep
(2017–2019). Our approach can report findings based on the ex-
tent of overlap among sets and their cardinalities. We observe that
there is a high overlap among sets (Figure 5a). The set AI/ML is
the largest (height of the rectangle), while two intersections con-
tain only one element. Our approach enables analysis based on the
membership weight of elements. Comparing two different set in-
tersections: XA = { Graphics/Vis./HCI, Algorithms } vs. XB =
{Graphics/Vis./HCI, NLP, AI/ML, Robotics} (Figure 5a1), we
find that both contain only one element. Through different sizes of
circles, our approach can highlight the differences in membership
weights of elements. XA has one element David R. Karger (small
circle), who published three papers, while XB has a researcher
Sergey Levine (big circle), who published 48 papers.

Suppose we are interested in the researchers who have published
in both NLP and Robotics during 2017–2019. In Figure 5a, the rect-
angular node representing the intersection of the two sets contains
five circles. None has a hat marker, indicating that no researcher
published in just the two fields. For the base sets NLP and Robotics,
in Figure 5a, we can see that the heights of corresponding rectan-
gles are similar, suggesting that their cardinalities are almost the
same (112 and 128, respectively). Our approach enables further
analysis based on the circle size and their distribution. On sort-
ing by the membership weight, we see that the size of circles in
Robotics is larger than in NLP (both exclusive and non-exclusive
elements). Hence, we can say that the number of publications by
most individual researchers in Robotics is higher than researchers
in NLP. On hovering, we find that the maximum number of publi-
cations in Robotics is 34 by Masayuki Inaba, whereas in NLP it is
25 by Graham Neubig.

Next, we show how our technique can visualize the temporal
changes in sets from an overview perspective, followed by explor-
ing changes in the membership of specific elements.

A snapshot of the interface with the publication dataset is shown
in Figure 3. The aggregated view in the middle (Figure 3a) shows
that every set is present in all the timesteps (black left edge of rect-
angles in the bottom layer). Vertical colored bars (Figure 3b) and
the line chart below the nodes in L1 (Figure 3a) shows that the num-
ber of researchers in AI/ML has grown rapidly compared to other
fields. While panning the aggregated view, we observe that there
are only four layers in the dataset. It indicates that no researcher
has published in more than four research fields in a single timestep.

To find the researchers with the highest number of publications
and their field of research, we sort the element list by decreasing
order of ‘Sum’ column (left-click on the column header), as shown
in Figure 3d. To know the researcher’s field of study, we look at the
colored boxes in each row. The colored boxes (orange and green)
for the first researcher Wolfram Burgard ( ) shows that he has
published only in AI/ML and Robotics. A pattern can be seen from
the first five rows in the list. In each row, the green-colored box
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a
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b

Figure 5: Snippets of the interface showing (a) set intersection view of the last timestep (2017-2019) from Computer Science research dataset
(Section 5.1) and (b) summary edges in the diff view between 2016 and 2017 timesteps from Linux GitHub repository dataset (Section 5.2).

(a)

(b)

Greg Kroah-Hartman, David S. Miller, Linus Torvalds, Al Viro, and Jiri Kosina

Greg Kroah-Hartman, David S. Miller, Linus Torvalds, 
Al Viro, and Jiri Kosina

Figure 6: Consistent contributors in five modules of Linux GitHub
repository across all timesteps.

is very prominent (less transparency), which indicates that the top
five researchers have consistently published in Robotics. The sec-
ond row shows researcher Gerd Hirzinger ( ) with only a green
colored box, indicating his specialization in Robotics. These ob-
servations are confirmed by their evolution chart (Figure 3b1). As
seen from the timelines of the first five rows, the researchers are
active except Gerd Hirzinger, who stopped publishing in the last
two timesteps. Additionally, the number of articles they publish per
year has been declining except for Mayasuki Inaba ( ). For fur-
ther exploration, publication details of a researcher are available on
right-clicking the corresponding element.

5.2. Evolution of Developer Activities in Software Projects

In this example, we analyze changes in software development ac-
tivities. Analyses like these can show staff churn, productivity dif-
ferences, and modules requiring more work, thus helping manage
a software project [WYS09]. We study 5 Linux modules from its
GitHub repository. The modules (fs, drivers, arch, net, and kernel)
are the sets, and the elements are the committers (developers). The
membership weight is the number of commits done by a developer
to a module. We divide the repository evolution from 2008 to 2017
into ten yearly timesteps and filter the developers who made at least
100 commits to these modules, obtaining 111 committers.

We select the aggregate view by clicking the ‘Aggregate all’ but-
ton. Since presence across all timesteps is encoded via opacity,

Figure 7: Comparing stability of developer contributions among
modules drivers and arch in the diff view between 2016 and 2017.

to find the most consistent developers, we look for black circles.
Hovering over them reveals the developer names, average commits
in every timestep, and percentage of presence in all timesteps, as
shown in Figure 6. These developers contributed to all modules (the
rectangle is in layer L5) in every timestep. The circle sizes show a
large difference in the average number of commits, from 15267.60
for Greg Kroah-Hartman (Figure 6) to 834.20 for Jiri Kosina.

To see the changes in developer activities in the last two
timesteps (2016 and 2017), we select the diff view between 2016
and 2017. We mention two remarkable changes:

• Module stability: In the bottom layer, we focus on the two
biggest rectangles representing the drivers and arch modules (Fig-
ure 7). The arch module has the least change in terms of cardinality
(55 to 56). A change in cardinality alone is not a good indicator of
stability. On a closer look, we see that the module has many semi-
circles. The horizontal bars beneath the rectangle (arch) show that
11 previous committers did not contribute in the later timestep. The
cardinality remained stable because 12 new developers contributed
to the module. In contrast, we see that the drivers module has the
most significant number of developers (64), who contributed in
both timesteps. Hence, across the two timesteps, the drivers module
was the most stable in terms of developer contributions.

• Developers shifting their focus among modules: Zooming
on the summary edges in the diff view, we see many inter-layer
tapered edges going up and down (Figure 5b). Upward edges indi-
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Greg 
Kroah-Hartman:

Felipe Balbi:

Bartlomiej
Zolnierkiewicz:

Paul Gortmaker:

2008 2009 2010 2011 2012 2013 2014 2015 2016 2017

Figure 8: Evolution charts of four committers, showing different contribution patterns across five Linux modules (encoded in color).

cate that developers contributed to more modules than before, and
vice-versa for downward edges. The summary edge from L2 to L1
indicates that five developers narrowed their focus to only one mod-
ule. Selecting the edge populates the element list with their names.

To highlight the different patterns of contributions among devel-
opers, we use evolution charts (Figure 8). We observe stable and
consistent contribution patterns to two modules by Felipe and to
all five modules by Greg. We also see an inconsistent contribution
across timesteps (Paul). Additionally, we observe a developer not
contributing to any module for some years (Bartlomiej).

6. Discussion

Scalability for dynamic set visualization includes the number of
sets and relevant set intersections, the number of elements, the level
of detail shown for set membership, and the number of timesteps
that are represented. Like any approach that explicitly models set
intersections, the number of relevant intersections can explode. In
the worst case, the set intersection graph has 2n nodes. But in prac-
tice, often, a large majority is omitted as these correspond to empty
set intersections. We observed in the tested data that up to six signif-
icantly overlapping sets could be represented without the visualiza-
tion becoming too dense. Region-based or line-based overlay tech-
niques [AMA*16, Section 4.2] do not scale any better if sets sig-
nificantly overlap. Some approaches only show intersections of two
sets (e.g., AggreSet [YEB16]), but this limits the analytical power.
With respect to the number of elements, existing aggregation-based
set visualization techniques (e.g., UpSet [LGS*14]) are more scal-
able. However, they hide the membership details of an element.
Visualization techniques based on aggregating elements are highly
scalable, but they are not directly comparable to our technique.
We do not aggregate any elements because we want to preserve
information on single elements for in-depth analysis. As demon-
strated, representing five hundred elements is feasible. Other ap-
proaches that show individual elements (e.g., Bubble Sets [CPC09],
OnSet [SMDS14]) scale similarly to our technique with respect to
the number of elements. As demonstrated, our approach is scalable
up to ten timesteps, which is similar to existing dynamic set visu-

alizations (e.g., Set Streams [AB20]). Since the changes in element
memberships might not be interesting for all timesteps or for all set
intersections, future work would include using data analysis tech-
niques to highlight the most relevant timesteps and intersections.

Unlike most set visualization techniques, our approach can
model and visualize the membership weight of an element for each
set it belongs to, together with the dynamic associations between el-
ements and sets over time. The proposed technique allows in-depth
visual analysis of how sets and their overlaps grow and shrink, and
how elements ‘migrate’ through sets. This has many applications.
We presented one toy example (Figure 1) and two real datasets.
They show how our visualization approach allows exploring over
time which products, research fields, and software modules are
more or less active. Analysis of the examples reveals which compa-
nies or people contribute most, or more consistently, and how they
become generalists (move towards the top layer) or stay specialists
(in the lower layers). This has practical value in market analysis,
supervisor choice, workload planning, team composition, setting a
software roadmap, etc. The prototype in the supplementary mate-
rial [Aga20] has further datasets that show the effectiveness and
generality of our approach.

7. Conclusion

We presented a first visualization approach that allows an in-depth
exploration of changes to set memberships down to the level of
individual elements and their membership weights. The visualiza-
tion is based on layered set intersection graphs. The layout corre-
sponds to a specialization or generalization hierarchy of elements.
Interpreting the graph as a dynamic graph allowed us to show set
membership changes with respect to different perspectives.
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