
IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 1

Local Prediction Models for Spatiotemporal
Volume Visualization

Gleb Tkachev, Steffen Frey, Thomas Ertl

Abstract—We present a machine learning-based approach for detecting and visualizing complex behavior in spatiotemporal volumes.
For this, we train models to predict future data values at a given position based on the past values in its neighborhood, capturing common
temporal behavior in the data. We then evaluate the model’s prediction on the same data. High prediction error means that the local
behavior was too complex, unique or uncertain to be accurately captured during training, indicating spatiotemporal regions with
interesting behavior. By training several models of varying capacity, we are able to detect spatiotemporal regions of various complexities.
We aggregate the obtained prediction errors into a time series or spatial volumes and visualize them together to highlight regions of
unpredictable behavior and how they differ between the models. We demonstrate two further volumetric applications: adaptive timestep
selection and analysis of ensemble dissimilarity. We apply our technique to datasets from multiple application domains and demonstrate
that we are able to produce meaningful results while making minimal assumptions about the underlying data.

Index Terms—Volume Visualization, Machine Learning, Neural Nets, Ensemble Visualization

F

©2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including
reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to servers or lists, or reuse
of any copyrighted component of this work in other works.

1 INTRODUCTION

I NCREASINGLY fast computing systems as well as high-accuracy
measurement techniques enable generation of spatiotemporal

datasets with high resolution in both time and space. To analyze
this kind of data, the most popular approach is still to manually
browse through the timesteps individually or to use animations.
This allows to look at the full spatial information, and well-known
rendering and interaction techniques can be used. However, relying
on animation alone has been shown to be ineffective, as only
a limited number of frames can be memorized by an observer
(e.g., [1]). Also, smaller details that can often be crucial can easily
be missed. However, generating a meaningful static or summary
visualization for spatiotemporal data is challenging due to issues
ranging from occlusion and visual clutter to performance limitations
for large data. For instance, selecting only a subset of timesteps for
visualization (e.g. [2], [3], [4]) requires either data-specific selection
criteria or involves the costly explicit quantification of timestep
differences, and interesting process transitions may still be missed.
On the other hand, while temporally dense techniques visualize
all timesteps, these typically restrict themselves to specific (user-
defined) characteristics or features to circumvent the occlusion
problem ([1], [5], [6]).

In this paper, we integrate approaches from scientific visual-
ization and machine learning and devise a new technique which
allows us to construct models for detecting irregular processes in
data without making any domain-specific assumptions.

After reviewing related work in Sec. 2, we discuss what we
consider the main contributions of our work. (I) We introduce our
prediction-based analysis method in Sec. 3 and (II) investigate
potential causes of prediction errors in spatiotemporal data (Sec. 4).
On this basis, (III) we present how to use the prediction results in
visualization in Sec. 5. Furthermore, we present two applications
building on top of the local prediction models: (IV) adaptive

• G.Tkachev, S.Frey and T.Ertl are with the Visualization Research Cen-
ter of the University of Stuttgart. Email: {gleb.tkachev, steffen.frey,
thomas.ertl}@visus.uni-stuttgart.de

timestep selection (Sec. 6.1) and (V) an ensemble dissimilarity
measure (Sec. 6.2). We describe our implementation in Sec. 7 and
present the results in Sec. 8. Based on the results, (VI) we develop a
semi-automatic method for parameter selection in Sec. 8.5. Finally,
we discuss the current limitations and the future directions of our
work in Sec. 9.

2 RELATED WORK

Time-varying data visualization. A large body of work in time-
dependent volume visualization is based on feature extraction. Time
Activity Curves that contain each voxel’s time series have been
used in several techniques (e.g. [7], [8]). Lee et al. [9] extract
trend relationships among variables for multifield time varying
data. Wang et al. [10] extract a feature histogram per volume block,
characterize the local temporal behavior, and classify them via
k-means clustering. Based on similarity matrices, Frey et al. [11]
detect and explore similarity in the temporal variation of field data.
We also perform temporal feature extraction, however, we do not
manually define our features, but learn them from the data.

Dutta and Shen [12] use Gaussian Mixture Models for tracking
user-defined distribution-based features in volume data. Tzeng and
Ma [13] use neural networks to generate adaptive transfer functions
based on key frames. In contrast, our prediction models are
unsupervised. Muelder and Ma [14] also use prediction, utilizing
analytical predictor-corrector approach to track feature regions.
However, we learn prediction mappings from the data and perform
prediction directly on data values, without prior feature or predictor
definitions.

Another line of work uses the notion of a space-time hypercube
to apply operations like temporal transfer functions [5] or slicing
and projection techniques [15] (see Bach et al. [16] for an overview).
Tong et al. [3] use different metrics to compute the distance between
datasets, and employ dynamic programming to select the most
interesting timesteps on this basis. Based on a similar concept,
Frey and Ertl [4], [17] generate a distribution-based distance
to select timesteps. In a follow-up work, Frey [18] uses neural

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 2

Training Local prediction
Local prediction

models
Misprediction

volumes

Interactive exploration

Timestep selection

Ensemble analysis

Fig. 1: Overview of our approach. We begin by training several local prediction models on a dataset. Then we perform prediction for the
same data and obtain spatiotemporal misprediction volumes (error). We use the results for several applications, including exploration via
spatial and temporal views, adaptive timestep selection and ensemble dissimilarity analysis.

networks to estimate such distance metrics for time series data. Our
technique also allows for adaptive timestep selection, but it relies
on prediction-based temporal irregularity rather than distribution-
based distance metrics.

Information theory in visualization Information theory has
recently been gaining attention in visualization research. Bordoloi
and Shen [19] use an entropy-based feature for view selection in
volume rendering. Viola et al. [20] present an approach to automat-
ically focus on objects in volumetric data by minimizing mutual
information. Chen and Jänicke [21] as well as Wang and Shen [22]
provide an overview and discuss the applicability of information
theory in visualization. Related to our approach, Jänicke et al. [23]
use the domain-agnostic information-theoretic notion of statistical
complexity that estimates predictability of spatiotemporal regions.
As opposed to using a probabilistic definition of predictability, we
train an actual predictor on the data, measuring the error of the
deviation as an estimate of irregularity. This allows us to not only
benefit from higher-level features and generalization behavior of
ML-models, but also to use multiple different models to produce a
diverse visualization.

Machine learning in visualization In general, learning-based
approaches are considered to have great potential in visualiza-
tion (e.g. [24]). Apart from their application to specific tasks
in time-varying data visualization, they have been of particular
interest in the area of Visual Analytics (VA, see [25] for an
overview). Fuchs et al. [26] demonstrate how to foster interaction
between a human analyst and a genetic learning algorithm. In
epidemiological analysis, Klemm et al. [27] employ decision trees
to study relationships between image shape descriptors and non-
image features.

While we use feed-forward neural networks in this work,
unsupervised learning via self-organizing maps (SOMs) [28]
has also gained popularity. For instance, Andrienko et al. [29]
investigated how SOMs can be integrated into the visual analysis
process of spatiotemporal data. Sacha et al. [30] presented a
VA approach to analyze time series data using SOMs. Recently,
neural networks were applied in the context of volumetric data.
Berger et al. [31] used a neural network model with adversarial
loss to generate and explore volume rendering images. And Han
et al. [32] developed an autoencoder-based method of selecting and
analyzing salient streamline and stream surfaces. We also employ
neural networks for volume data, but we focus on the detection of
spatiotemporal irregularities.

A few related approaches were investigated in the field of
video analysis (preliminary results in [33], [34]), where neural
networks are used to classify video frames into normal frames
and shot boundaries. We also utilize machine learning models to
detect events but for spatiotemporal visualization. More importantly,
we do not make any assumptions about the events in the data,
using prediction error as an indicator of irregular behavior, taking

an unsupervised approach (as opposed to training the model to
explicitly classify behavior as regular/irregular on supervised data).

3 PREDICTION-BASED IRREGULARITY ANALYSIS

Our objective is to detect and investigate irregular events in
spatiotemporal volumes without making domain- or dataset-specific
assumptions. For this, we analyze local temporal behavior using
generic machine learning models, detecting regions of irregularity.
In this section, we outline our approach in Sec. 3.1, before dis-
cussing the models (Sec. 3.2), our prediction problem formulation
(Sec. 3.3) and how multiple models can be used to improve the
analysis (Sec.3.4).

3.1 Concept and Outline
An overview of our approach is presented in Fig. 1. Specifically,
we train a set of models to predict future data values based on
the past. Once our models are trained, we evaluate them on the
data and compare their prediction to the actual data. The prediction
difference that we obtain is itself a spatiotemporal volume, which
we use as an indicator of irregular behavior. Futhermore, we use
multiple models of different capacity as detectors of different
“sensitivity”. Simpler models can only predict the most basic
behavior and fail often, while more complicated models produce
more compact and sparse regions of inaccurate prediction.

High prediction error in a particular region tells us that the
model failed to capture the local behavior. There are several reasons
why this could happen: the behavior is too complex to be expressed
by the model; the behavior is rarely observed in the dataset (an
outlier); available information is insufficient to predict the outcome.
This is discussed in more detail in Sec. 4. We argue that these
scenarios describe events of importance to the analyst and can be
used to guide the visual exploration process, highlighting interesting
events and providing a meaningful overview of the dataset, acting
as a starting point for a more detailed and specialized analysis.

3.2 Prediction model
In principle, any model can be used as a predictor. However,
accuracy of the prediction plays an important role: if the model
cannot capture even trivial local behavior, we gain no additional
information from the analysis. For simpler datasets, analytical
models can be used, repeating past values or estimating local
derivatives to do extrapolation. But as the data grows more complex,
we require increasingly complex models, which inevitably implies
additional assumptions and specialization. In contrast, we want
our models to be uniformly applicable to datasets from different
domains, and thus take a data-driven approach, using machine
learning methods to learn local behavior from the data.

Specifically, we opted to use neural networks with simple
architectures, utilizing only convolutional and densely-connected

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 3

layers. This provides us with a number of advantages. First of all,
neural networks can represent a large number of functions and
can be efficiently trained on large data. Second, simpler neural
networks have fewer hyper-parameters and allow for easy and
gradual adjustment of the model capacity, by changing the number
of layers and neurons. More advanced network architectures, e.g.
using recurrent connections, often require adjusting several related
components together, each of which may have a complex impact
on the prediction. Simple networks allow us to reason about the
models in terms of their overall capacity, rather than qualitatively
different architectures. Most importantly, by using basic densely-
connected and convolutional layers we make as few dataset- or
domain-specific assumptions as possible. Convolutional layers
are basic locally-connected layers that exploit spatial coherence,
which is a reasonable assumption for most types of scientific data.
Nevertheless, we use networks both with and without convolutions,
demonstrating their appropriateness for the task.

3.3 Local prediction problem

One of the key characteristics of our method is our local approach
to prediction, i.e. the model predicts each future value based on
values that occurred in the spatial neighborhood of the point in
preceding timesteps. In principle, several other approaches could be
taken, for example predicting the full field belonging to a timestep.
However, there are a number of advantages to the local approach.
Most importantly, locality removes positional information from
the input data, making the learned prediction mapping translation-
invariant. First, this makes the results more intuitive: equivalent
behavior occurring in different locations in the data produces an
equivalent effect on the prediction error, and thus has the same
impact with respect to the visualization. Second, it simplifies the
prediction problem, which means that much simpler models could
be used for analysis: the model does not need to learn the same
behavior in different locations separately. The local assumption
also makes it less likely that the model will simply “memorize”
the dataset, overfitting it heavily. A simple example would be an
object that spontaneously appears: a local model has no way of
anticipating that event. It has to predict that empty space leads
to empty space, since that is what happens 99% of the time.
If the model had full positional information, it could associate
certain “landmarks” from distant regions of the data with the object
appearing, effectively overfitting the dataset, requiring a lot of care
with model regularization and validation. Local prediction also
provides several performance gains. Using smaller patches and
simpler models means that we require less training data and update
fewer parameters, speeding up the training process. Finally, finer
data partitioning increases the parallelization potential both during
training and prediction. For further discussion see Sec. 9.

In formal terms, local prediction means that our model, given a
voxel value D(p, t) at the spatial position p = (x,y,z) in timestep t,
is trained to perform the following mapping:

Patch(p, t, ls, lt)→ D(p, t +1) (1)

where Patch(p, t, ls, lt) is a spatiotemporal box with spatial extent
ls and temporal extent lt centered in space around point p. Note,
that unlike the spatial extent ls, the temporal extent lt covers only
one direction, thus the input includes only the past values, and none
from the future.

For additional control over the difficulty of prediction, we
generalize the problem to predicting not one, but d timesteps ahead.
Thus, we add a delay between the input patch and the target value:

Patch(p, t, ls, lt)→ D(p, t +d), d ≥ 1 (2)

This extension is useful for datasets with high temporal
resolution. Increasing the value of d makes learning of simple
mappings (e.g. repeating the most recent value) less feasible,
forcing the model to learn more complex temporal relationships
(detailed discussion in Sec. 8.4.1).

To obtain the data for training the model, we extract all possible
spatiotemporal patches of spatial radius ls, temporal extent lt and
delay d. This means, that for a dataset of size (X ,Y,Z,T) we have
n data points:

n = (X− ls)× (Y − ls)× (Z− ls)× (T − (lt +d)) (3)

Since the size of the extracted data grows polynomially with the
dataset resolution, for large volumes it may easily reach terabytes,
making the training computationally infeasible. To alleviate the
problem, we perform random undersampling of the data, including
a given patch into the training data with probability pu.

After the training, we evaluate the model on the whole dataset,
i.e. on every possible patch, obtaining a full spatiotemporal
prediction volume. The prediction volume is slightly smaller than
the original dataset, since we cannot perform prediction near the
borders. Finally, we compute the absolute difference between the
prediction volume and the original data. We use the resulting
misprediction volume for visualization (e.g., Sec. 5).

3.4 Multiple prediction models
We can extract more information about the behavior irregularity
by using not just one, but a set of models with varying capacity.
Simpler models can only capture basic temporal relationships
and tend to prioritize the most common scenarios, producing
accurate predictions only in simpler spatiotemporal regions. More
complicated models are able to represent many scenarios and
produce fewer large errors, and thus focus on the most irregular
behavior. This allows to roughly categorize different data regions
in terms of their irregularity.

When doing prediction with multiple models we follow the
approach described previously in Sec. 3.3. Only the extracted train-
ing data is reused by different models, while weight initialization,
training and prediction are performed separately. Once we have
made a prediction using each of the models, we compute the
absolute differences to the original data, obtaining a misprediction
volume for each model. We describe how these volumes can be
used for visualization in Sec. 5 and Sec. 6.

4 CAUSES OF PREDICTION ERROR

Before using the models and their prediction errors to support
visualization, it is important to first understand their properties,
which we discuss in detail in this section. There are several potential
causes for errors of a local prediction model. We distinguish
between three scenarios that can lead to high prediction errors,
exemplify them via dedicated synthetic datasets, and demonstrate
the corresponding results of our prediction-based approach:

• Uncertainty (Sec. 4.1) Behavior cannot be predicted
completely from the input (due to stochastic processes
or insufficient data).

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 4

(a) Spatial misprediction, 50/50 split

(b) Spatial misprediction, 90/10 split

0 20 40 60
0

10

20

30 Pause Turn

Time (t)

M
SE

(c) Temporal misp., 50/50 split

0 20 40 60
0

10

20

30 Pause Turn

Time (t)

M
SE

(d) Temporal misp., 90/10 split

Fig. 2: Demonstration of the uncertainty scenario. The data has
small circular objects with different radii moving upward with
different, but uniform, velocities. After 32 timesteps and a pause
of three timesteps, they randomly move left or right. We show the
traces of the objects in pale green. Since neither the pause nor the
turn are deducible from the local data, the outcome is uncertain,
leading to prediction errors (in red). a: When two turn directions are
evenly split, the model predicts a mixture of both turns, incurring
large errors for most objects. b: When most of the objects turn
left, the model predicts the left turn, incurring larger error on the
right-turning objects. c, d: Average error in each timestep, both the
pause and the turn events are visible. The error at the turn decreases
for the 90/10 case, since the outcome is less uncertain.

• Uniqueness (Sec. 4.2) Behavior only rarely occurs (i.e.,
underrepresented in the training data).

• Complexity (Sec. 4.3) The model’s capacity is insufficient
to accurately fit numerous different behaviors.

4.1 Uncertainty

The uncertainty scenario arises when the target volume value is
not completely determined by the model’s input. This can happen
due to hidden variables that are not included in the data, the patch
size being too small to contain all the relevant information (in
space or in time), or even due to innate stochasticity of the data-
generating process. Conceptually, even an optimal predictor would
have non-zero error in this scenario (Bayes error rate) [35].

To analyze this scenario, we constructed a dataset consisting
of thirty small circular objects moving in space. The objects have
randomized velocities and radii, but all move uniformly upward.
After 32 timesteps, all the objects simultaneously stop moving,
staying in place for three timesteps. Afterward, all of them continue
the uniform motion but in different directions: half of the objects
move to the left, and the other half moves to the right.

This dataset contains uncertainty, because it is impossible to
predict whether an object is going to turn to the left or to the right
using only local information. The pause in the objects’ motion is
introduced to signal the upcoming change of direction, in other
words, the model “knows” when the turn is going to happen, but
doesn’t “know” whether it’s a left or a right turn. By restricting

the uncertainty to only the direction we are able to more clearly
observe its effects.

We trained a small two-layer model using a prediction delay of
three frames. Specifically, we use a “D64-D32” model throughout
this section, with the model notation introduced in more detail later
in Sec. 7. The spatial regions of high error and total error over time
are presented in Fig. 2. The first important feature is the two peaks
in the temporal view (Fig. 2c). The former peak corresponds to
the pause in the objects’ motion, since it cannot be expected from
the local information alone (otherwise the model could “memorize”
that it happens after 32 timesteps). The latter occurs when the
objects continue to move left or right, and the model cannot predict
the direction. In the spatial view (Fig. 2a) we show the traces of the
objects (in pale green) and the errors (in red). We see that for many
objects the model predicts some combination of the left and right
motion, resulting in error blobs on the both sides of the turn. This
shows that the model predicts the turn, since predicting a lack of
motion would result in even larger errors, but it cannot predict the
exact direction due to its uncertainty. Once the model observes the
first of the frames after the turn, the uncertainty is no longer there,
and the model’s prediction becomes accurate again (thus there are
no large errors after timestep 39).

For another experiment, we generated a similar dataset, where
only three out of thirty objects turn right, and the rest turn left. We
then trained the model with the same configuration as previously.
Fig. 2d shows the temporal misprediction, where we can see that the
second peak corresponding to the turn became significantly smaller.
This can be explained by looking at the spatial misprediction in
Fig. 2b: the three objects that turned right have large errors, because
the model has been trained to predict the dominant left direction.
The rest of the objects only have errors from the pause event
(half-circles above and below, cf. Fig. 2a), thus resulting in an
overall smaller error peak. Although the uncertainty is still present,
the right turn scenario occurs less often in the data, and thus the
average loss of predicting the left turn is significantly lower than
the other alternatives (predicting a right turn or some mixture of
both). Thus, the model always predicts the left turn which is the
optimal prediction in this uncertain scenario (both in terms of the
MSE loss and the Bayesian decision rule).

Note that we introduce the larger prediction delay to better
illustrate the uncertainty scenario, but the results do not change
qualitatively when using a prediction delay of one. The model
still cannot anticipate the direction change and produces prediction
errors. However, in this case they occur only during one frame and
the error peak immediately follows the event.

4.2 Uniqueness

If a distinct pattern of local behavior is sufficiently unique, the
model is likely to produce high errors predicting it. Since the be-
havior is underrepresented in the training data, it does not generate
strong gradients, and thus the training process prioritizes more
typical patterns. There is a tight connection to the generalization
performance of the model and hence, regularization: accurately
fitting an outlier implies overfitting the data, which becomes harder
when using simpler models and/or stronger regularization.

To demonstrate the uniqueness scenario in practice, we con-
structed a simple dataset where twenty small objects of various
shapes move uniformly upward with a constant velocity. The
objects change their voxel values following a periodic func-
tion (“blinking”), with all but one object using a period of four

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 5

(a) Nineteen objects use a period of seven frames, the right-most
object has a period of four.

(b) The left-most object uses a period of seven frames, the rest have
period of four frames.

Fig. 3: Demonstration of the uniqueness scenario. The two datasets
consist of objects with various shapes and sizes moving upward,
changing their voxel values according to the same periodic function.
We visualize the traces of objects (in pale green) and regions with
high errors (in red). a: When one of the objects uses a different
period than the rest, it is an outlier and causes high prediction
errors. b: When all but one object use the former “outlier period”,
what used to be an inlier becomes an outlier instead.

frames. This single object is meant to be an outlier and has a period
of seven frames.

The results obtained using the “D64-D32” model and a three-
frame prediction delay are presented in Fig. 3a. There we visualize
the traces of the moving objects (in pale green) and regions where
the model produces high errors (in red). As we can see, the
first nineteen objects (left-to-right) did not incur large prediction
errors, while the last outlier object can be detected. In an inverse
experiment, we used the four-frame period for a single object, and
the period of seven frames for the following nineteen objects. The
results for a model trained on this data are shown in Fig. 3b, where
a symmetrically opposite outcome has occurred. The objects with
the former “outlier period” of seven frames are now accurately
predicted, while the four-frame object has incurred large errors.

This behavior might appear to be similar to the uncertainty
scenario, however there is an important distinction. With uncer-
tainty, two different outcomes follow identical (or very similar)
local behavior. Thus, it is impossible for the model to “disentangle”
the two outcomes in the input space, regardless of its capacity.
In contrast, in the uniqueness scenario, the rare outcome is still
completely determined by the prior local behavior.

4.3 Complexity
The complexity scenario refers to the situation where the model’s
capacity is insufficient to accurately fit the data. Conceptually,
as the number of distinct local behavior patterns increases, the
learned mapping is expected to produce a correct prediction over
an increasing number of distinct regions of the input space. When
the capacity of the model is too low, it cannot separate the different
regions, leading to prediction errors. Although determining the
capacity of a neural network is still a difficult problem [36], some
understanding can be gained from statistical learning theory and
the VC-dimension [37], which measures a classifier’s capacity as
its ability to separate arbitrary points in the input space.

To illustrate the effects of complexity, we constructed a dataset
consisting of 27 small objects of varying shapes and radii, which
change their value following one of several predefined patterns.

There are three possible shapes and three radii, resulting in nine
unique object types. The first frame of the dataset is presented in
Fig. 4a, demonstrating the shapes of the objects. For each of the
nine shape-radius combinations we defined one unique temporal
pattern. The patterns are polylines with a different number of
segments, resulting in time series of varied complexity. Note that
since each series corresponds to a unique spatial shape, there is
no uncertainty in the data, and the future values are completely
determined by the past. We trained a “D16-D8” model with a
prediction delay of three frames on this data, using a long 20-frame
patch size to minimize uncertainty of prediction. For convenience,
we plot the prediction over time at the center point of nine objects,
one plot for each unique shape (Fig. 4b). Even though the model
was trained on the data, its capacity is insufficient to capture the
many possible local behavior patterns. Thus, the model incurred
significant errors (in red), with higher errors corresponding to the
more complicated fast-varying temporal patterns.

In a complementing experiment, we trained a larger “D64-D32”
model under the same configuration, with the results plotted in
Fig. 4c. Although the data has not changed, the model was able
to better predict the behavior, since its capacity is larger (overall
MSE of 1.34 vs. 3.22 for the smaller model). Many more of the
various patterns in the data are now captured well, thus highlighting
a smaller subset of spatiotemporal events.

The complexity scenario is distinct from uniqueness, because
all the behavior patterns occur with the same frequency. However,
in practice they often interact, with both complexity and frequency
of local patterns dictating what is predicted accurately by the model.
We demonstrate this complexity-uniqueness interaction in Fig. 4d,
where we modified the dataset, such that the most complicated
time series is used more often than the simpler ones. Specifically,
we replaced seven out of nine temporal patterns with the most
complicated series from the previous experiment (on the left),
leaving the two simpler patterns on the right unchanged. First of all,
the overall MSE of the “D16-D8” model has decreased from 3.22
to 0.23 (cf. Fig. 4b), since there are fewer unique local patterns to
capture. More importantly, the model has predicted the complicated
behavior more accurately than the simpler one, because it is now
common for the dataset. There lies a conceptual advantage of a
machine learning model: it can still account for complex behavior if
it is typical for a given dataset, without prior assumptions regarding
the characteristics of this behavior.

5 MISPREDICTION VISUALIZATION

Using our prediction-based approach (Sec. 3) we aim to capture the
properties of the dataset in a domain-agnostic fashion, providing
an overview of regions with irregular local behavior. For this,
misprediction volumes obtained from multiple local models can
be used to construct spatial and temporal views of irregularities
in the data. Due to the stochastic nature of the model training
process, the raw misprediction volumes are noisy, with the exact
error magnitude varying among neighboring voxels. To suppress
this noise and present a visually clear overview of each model’s
large-error regions, we apply spatial smoothing to each volume.
This makes sure that large spatially-coherent prediction errors have
a stronger effect on the results than sparse random deviations.
For consistency, we use a kernel radius of five for all results
presented in the paper. After the smoothing, we aggregate each
misprediction volume separately into an aggregate volume using
the maximum function. This way we avoid summing up smaller

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 6

(a) The first frame of the generated dataset, showing the nine different spatial shapes.

0 20 40 60
0

100

200

Time

V
al

ue

0 20 40 60 0 20 40 60 0 20 40 60 0 20 40 60 0 20 40 60 0 20 40 60 0 20 40 60 0 20 40 60
(b) Results from the “D16-D8” model, showing the object value (gray), the model prediction (blue) and their difference (red) over time.

0 20 40 60
0

100

200

Time

V
al

ue

0 20 40 60 0 20 40 60 0 20 40 60 0 20 40 60 0 20 40 60 0 20 40 60 0 20 40 60 0 20 40 60
(c) Results from the “D64-D32” model, showing the object value (gray), the model prediction (blue) and their difference (red) over time.

0 20 40 60
0

100

200

Time

V
al

ue

0 20 40 60 0 20 40 60 0 20 40 60 0 20 40 60 0 20 40 60 0 20 40 60 0 20 40 60 0 20 40 60
(d) Results from the “D16-D8” model on the modified dataset, where the most complicated time series was used for most of the objects.
Showing the object value (gray), the model prediction (blue) and their difference (red) over time.

Fig. 4: Demonstration of the complexity scenario. a: The dataset consists of stationary objects with nine unique radius-shape combinations.
Each object type “blinks” following a unique time series. b: Value at the center of nine objects (one for each unique behavior), shown
together with the prediction of a simpler model (in blue) and the resulting error (in red). The more complicated fast-changing time series
(on the left) result in larger and more frequent errors. The larger model in c produces smaller errors with fewer spikes, thus highlighting
fewer spatiotemporal patterns. d: Interaction between the complexity and the uniqueness scenarios. When the most complicated behavior
was made frequent in the dataset, the model captured it more accurately than the simpler one.

prediction errors, allowing us to distinguish between spatial
regions where brief unpredictable behavior took place and regions
where low errors consistently occurred throughout the dataset (see
supplemental materials for a further discussion). Thus, we end up
with multiple spatial volumes, each voxel of which represents the
largest smoothed prediction error that a particular model has at the
given spatial location.

Next, we assign a transfer function with a single distinctive
color to each of the aggregated volumes, and perform multi-volume
raycasting. We aggregate the samples along the ray front-to-back,
compositing a sample from each of the volumes at each spatial
location. This allows the user to distinguish where prediction errors
occurred for each of the models. When compositing samples, we
order the volumes according to their model’s capacity, highest
first. Although the transfer functions can be adjusted interactively,
we often use single-peak transfer functions for iso-surface-like
rendering of all but the first volume, which corresponds to the
model with highest capacity. This way the user can always see the
regions where even the most sophisticated model has failed, i.e.
regions with the most unpredictable behavior. For context we also
render the original spatiotemporal volume simply averaged over
time. Here we typically use a relatively transparent ramp transfer
function to keep the focus of the visualization on the prediction
error volumes. We used this approach in Sec. 4 (e.g. Fig. 2a) and
demonstrate the results in more detail in Sec. 8.1.

In addition to a spatial misprediction view of the dataset, we
provide a temporal view. Its goal is to highlight the timesteps
when the most unpredictable changes occurred and help to detect

different temporal phases of the data. To this end, we aggregate the
misprediction volumes separately for each model, for each timestep,
eliminating the spatial dimension. The aggregation is done using
the average function, which we found to be more appropriate for
distinguishing temporal phases. As a result, we obtain a time series
for each model, which we plot as a line graph. A previous example
can be seen in Fig. 2d, while a detailed discussion of the results
follows in Sec. 8.1.

The spatial and temporal views can be linked together via
interaction for dataset exploration. Specifically, the user can interact
with the temporal misprediction view by selecting a time range.
When the range is selected, the spatial view is recomputed using
only the timesteps that are part of the specified time range. This
can be used to focus on periods of time with large prediction errors,
providing a spatial view of the regions that couldn’t be predicted
well by the model. If only one timestep is selected, we show a
single timestep of the original data augmented by regions of high
prediction error without any aggregation. In this mode the user can
access the lowest level of detail and search for explanation of the
patterns occurring in the aggregated views.

6 FURTHER APPLICATIONS

In this section we discuss further applications of local predic-
tion models in visualization, namely, adaptive timestep selection
(Sec. 6.1) and a dissimilarity measure for ensemble data (Sec. 6.2).

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 7

6.1 Timestep selection

Spatiotemporal data often consists of many timesteps, all of which
cannot be statically presented to the user, motivating temporal
subsampling (e.g. [2], [3], [4]). However, a meaningful selection
of timesteps requires either data-specific selection criteria or is
based on quantification of timestep differences, whereas interesting
process transitions may still be missed. Here, we aim to use
the prediction error as a generic method to select timesteps
of interest. Our goal is to automatically present the significant
irregular temporal events to the user, which can act as an additional
exploration approach, complementary to the misprediction views
described in Sec. 5.

Our technique uses the misprediction volumes obtained from
local models (Sec. 3.2) to detect timesteps that contain irregular
temporal events. As usual, we begin by training a local prediction
model and measuring the prediction error on the original data.
As described in Sec. 5, we average the misprediction volume
spatially, constructing a time series for the model. The resulting
time series describes the mean prediction error that occurred at a
certain timestep (e.g. Fig. 2d).

For timestep selection, we now consider the maxima of the
time series, since they mark irregular temporal events and transition
points in the data. To remove smaller deviations and help focus
on the most significant events, we perform bilateral filtering
of the time series, using a Gaussian kernel for both the time
and value dimensions. The overall effect of bilateral filtering is
smoothing over time that avoids smoothing over elements with
large differences in value, thus preserving the significant error
peaks that we are interested in. Then, we extract the local maxima
points of the series and remove consecutive points that are closer
than a threshold. This helps to avoid choosing peaks that are only
a few timesteps away, which can sometimes happen for events that
occur over several timesteps and cause some lingering fluctuation
of the prediction error. Generally, we set the threshold to only a
few frames, to avoid missing separate consecutive events. After the
maxima are detected, we pick the corresponding timesteps as ones
containing significant temporal events.

6.2 Ensemble data analysis

Ensemble data is a new challenging direction in visualization
research [38]. Many approaches have been proposed ([39], [40],
[41], [42]), however, very specialized methods are often required to
address the problem of such complexity. Sedlmair et al. [43] present
an overview of recent ensemble visualization approaches. Some
of the common tasks in ensemble analysis are partitioning of the
output space, outlier detection and sensitivity analysis, all of which
require a measure of distance or similarity. In a simple case of scalar
outputs the difference between outcomes could be easily quantified.
But if the simulation produces a whole spatiotemporal volume,
straightforward distance measures such as voxel-to-voxel difference
do not produce a meaningful result in many cases (e.g. [4], [17]).
For example, a phase shift between two members would produce
a large quantitative difference, while qualitatively they are very
similar. Therefore, we need higher-level similarity measures and
that often requires specialized techniques and domain- or even
data-specific knowledge.

We propose a domain-agnostic dissimilarity measure for en-
semble members that could be used to augment existing specialized
techniques. The measure is an extension of our local prediction
approach. The main idea is to perform cross-prediction across

the ensemble members: training a local prediction model on one
member and then applying it on another, measuring the overall
prediction error. This effectively estimates the difference between
the behavior captured by the model from one member and the
actual behavior of another member. Conceptually, the measured
error can also be thought of as the generalization error of the model:
by observing how well the model performs on unobserved data, we
are estimating how different the data is from the training dataset.

Specifically, we train a separate local prediction model
(Sec. 3.2) on each member of the ensemble. Then, using each
model, we perform prediction for each member (including the one
that the model was trained on) and compute the mean squared
prediction error across the whole spatiotemporal domain. Thus, we
end up with a square matrix of cross-prediction errors E, where
each cell E(i, j) specifies the error resulting from training on the i-th
member and predicting for the j-th member. We further normalize
the cross-prediction error by the error measured when training on
the same data. This addresses the fact that some members can
be significantly harder to accurately predict than others due to a
higher amount of irregular behavior, regardless of which data the
model was trained on (Sec. 4). This could lead to cross-prediction
errors being large for a similar pair of complex simulations and
low for a similar pair of simple simulations, although qualitatively
the dissimilarity within both pairs should be the same. Therefore,
we use the relative cross-prediction error Er:

Er(i, j) = E(i, j)/E(j, j). (4)

Naturally, the cross-prediction error is not symmetric. This is
not only a result of model training being a stochastic process, but
also an important insight into the meaning of the error. A large
cross-prediction error means that local behavior common to the
predicted member didn’t occur in the training member (or occurred
too rarely). This implies, that training on a simulation with diverse
local behavior may produce a low cross-prediction when predicting
for another member. The predicted member on average may be
very different, but it’s local behavior is a subset of what the model
has captured during training and can reproduce during prediction.
Thus, to construct a dissimilarity measure from the cross-prediction
error we consider the error in both directions:

↔
Er(i, j) =

↔
Er(j, i) =

√
E2

r (i, j)+E2
r (j, i). (5)

This means that the dissimilarity between a pair of datasets is only
low if both cross-prediction errors are low.

Having a dissimilarity measure for the ensemble, several
visualization techniques could be applied. We chose to visualize
the ensemble using a dissimilarity matrix encoded as a heatmap.
This allows us to better evaluate our approach, since we directly
visualize the values of our measure for different member pairs. To
improve the visualization we also sort the ensemble members using
hierarchical clustering. Specifically, we perform agglomerative
hierarchical clustering with centroids, i.e. when merging clusters,
distance between clusters is defined as distance between the cluster
centroids. The resulting tree is then sorted, such that the distances
between adjacent leafs are minimized [44]. In other words, the
ensemble members in the visualization are arranged such that the
dissimilarity between neighbors is small.

7 IMPLEMENTATION

All models in this work are feed-forward neural networks with
two types of layers: convolutional and densely-connected. Convolu-
tional layers act on spatial dimensions using filters of size 3×3×3.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 8

0 20 40
10

100

1,000

Training epoch

M
SE

Training
Validation

0 50 100 150
10

100

1,000

Training epoch

M
SE

Training
Validation

Fig. 5: Training history for the models “C64-C64-D256-D256”
(left) and “D256” (right) on the droplet dataset. We perform early
stopping to avoid overfitting, terminating the training when the loss
on the validation dataset has stopped improving.

t = 90 t = 100 t = 110 t = 120
spheres: synthetic data containing moving spheres with collisions.

t = 10 t = 40 t = 240 t = 360
hotroom: air temperature simulation.

t = 40 t = 90 t = 140 t = 240
bottle: images of a laser pulse propagating through a bottle [45].

t = 0 t = 100 t = 200 t = 300
vortex street: CFD simulation of flow around a cylinder.

Fig. 6: Some of the datasets used in our evaluation.

For 2D datasets, filters of size 3×3 are used. In model descriptions
we refer to convolutional layers as “CX”, where X specifies the
number of feature maps. We refer to dense layers as “DX”, where
X is the number of neurons in the layer. We utilize ReLU activation
for both layer types. When using a combination of convolutional
and densely-connected layers, we insert a non-parametric flattening
layer in-between, which reshapes the input 4D array into a flat
array appropriate for dense layers. Additionally, all models have a
final dense layer with a single neuron and no activation, which acts
as a linear output unit for regression.

For instance, model “C64-C64-D256-D256” has the following
layer sequence: “Convolution(64, 33), Activation(ReLU), Con-
volution(64, 33), Activation(ReLU), Flat(), Dense(256), Activa-
tion(ReLU), Dense(256), Activation(ReLU), Dense(1)”. A special
case is the model we refer to as “D1”, which in fact consists only
of a flattening layer and a single neuron with no activation function.
Thus the model learns a linear function of the supplied inputs.

We normalize the training data to mean zero and standard
deviation of one, but otherwise do not perform any pre-processing
assuming the data to be clean. Should the dataset contain a
significant number of broken or missing cells, we could provide a

(a)

0 50 100 150 200
0
2
4
6
8

10

Time (t)

M
SE

(b)
Fig. 7: a: Spatial misprediction on the synthetic dataset with
moving spheres. The most complex model (orange) detects sphere
collisions, while simpler models (magenta, blue) also highlight
some of the faster and irregular motion. b: Comparison of detected
temporal events to the ground truth. Orange: Mean prediction
error of the model in each timestep. Vertical lines: Timesteps
when events happen. Light-gray stripes show the expected error
delay (two frames). Whenever an event occurs, we observe a
corresponding spike in the prediction error.

boolean mask as an additional input feature to the model.
We train all our models using the “Adam” [46] variation of

the stochastic gradient descent algorithm, with learning rate 0.001
and batch size 1024. Following standard practices, the training
is performed in epochs, where in each epoch the model observes
the whole training dataset once. We perform holdout validation,
splitting off 20% of our data into a validation dataset to monitor
the generalization performance. Furthermore, we use the validation
data to perform early stopping as a form of regularization [36],
although due to the relatively small capacity of our models and
large amounts of data we do not experience severe overfitting
showing similar training and test losses (Fig. 5). We monitor the
validation loss and stop the training process when no improvement
has been observed for 25 epochs and take the model checkpoint
from the best epoch as our trained model.

To perform prediction on a dataset we need to evaluate the
trained model on every spatiotemporal patch. Even for medium-
sized volumes the amount of input data may reach terabytes.
Because of this, our prediction implementation operates out-of-core.
We extract batches of spatiotemporal patches from the original data
stored on disk, compute the prediction on the GPU and write the
results back to disk. An additional optimization technique that we
use is caching of the prediction result for spatiotemporal patches
that contain nothing else but empty space (in the input and in the
target). As a result, we obtain identical prediction results, but can
reduce the GPU execution time for some of the datasets.

8 RESULTS

We now present and discuss the results of our prediction-based
visualization approach, including the spatial and temporal mispre-
diction views (Sec. 8.1), adaptive timestep selection (Sec. 8.2),
and ensemble dissimilarity analysis (Sec. 8.3). We also study the
effects of several important parameters (Sec. 8.4), demonstrate our
parameter selection method (Sec. 8.5) and extend our implemen-
tation to multivariate volumes (Sec. 8.6) The datasets used in this
section are shown in Fig. 6 and videos with the rendered results
are provided as supplemental material.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 9

Fig. 8: Spatial misprediction view of the “bottle” dataset, with
original data for context in gray. The complex model (in orange)
highlights only the transition regions, while the other also show the
initial pulse trajectory (on the left). The diffuse phase is completely
filtered out (in the middle).

0 150 300 450
0
1
2
3
4
5

Time (t)

M
SE

Fig. 9: Spatial and temporal misprediction views of the “hotroom”.
Three significant events can be identified in otherwise smooth data:
the initial front collision (t = 21), collision with the plates (t = 231)
and the formation of new streams (t = 350).

8.1 Spatial and temporal misprediction views

First we present our visualization approach to the analysis of
time-dependent volume datasets (Sec. 5). We use the following
three model sizes throughout this section: “C64-C64-D256-D256”,
“D256” and “D1”. For brevity and uniformity, we refer to them
as “Model A”, “Model B” and “Model C” respectively. We also
introduce a short patch size notation: “lt x lk

s ”, where lt and ls
are temporal and spatial extents (Sec. 3.3) and k is the number of
spatial dimensions, e.g. 7x53 is a patch of size 7x5x5x5.

Synthetic dataset (Fig. 7). We begin with a synthetic dataset
for which we can provide the ground truth describing all the events
that are happening in the data. The generated dataset contains
smooth spheres traveling along straight trajectories. Spheres
fully-elastically react to collisions with each other and with the
boundaries of the dataset (Fig. 6). Some of the spheres shrink
or grow as they move, and may abruptly change their trajectory.
Overall, the data contains simple behavior (linear motion, size
change) as well as more interesting and hard-to-predict events
(collisions and trajectory changes).

We applied models A, B and C to the data and present the
resulting spatial misprediction view in Fig. 7a. What we can see
is that the model with the highest capacity (orange) produces
large errors only in smaller regions. These regions correspond to
sphere collisions (appearing as two adjacent objects) and significant
trajectory changes. The model was able to adequately capture the
behavior associated with motion, and thus isolated the collisions
and sharp trajectory changes. A simpler model (B, in magenta)
failed in some additional regions, corresponding to trajectories of

smaller fast-moving objects. Finally, the simplest model (C, in
blue) displays significant prediction errors for many faster-moving
objects, resulting in long tube-shaped regions representing the linear
trajectories of the spheres. Another interesting property to observe
is that the high prediction error regions are often subsets of each
other: the simple model fails where complex model fails, but also
in some additional locations. This is expected behavior, considering
the fact that all model architectures are (1) qualitatively similar
(in terms of their components) differing mostly quantitatively, and
(2) trained on the same data with the same loss function. Data
points that produce large gradients during training result in highest
“priority” for all models. The simpler models do not have a high
capacity for capturing different scenarios, so after fitting the most
“important” data points, they cannot fit additional scenarios without
worsening their overall performance.

In Fig. 7b we present the temporal misprediction view for our
synthetic dataset obtained using the model A. To compare our
results to the ground truth, we plot the model’s error (orange)
and mark the timesteps where an event has occurred with a gray
vertical line. The figure shows that when no events happen the
model maintains a steady prediction error. However, when an
event takes place, we can see a corresponding spike in the graph.
Another interesting observation is that the peak error occurs several
frames later than the event itself. This is due to the prediction
delay (Sec. 3.3), which in this case was three frames (d = 3). To
better illustrate this effect we have also plotted the expected error
delay with a wider stripe. In the frame when a collision happens,
the objects change their movement direction, but still haven’t
traveled too far apart from their original trajectory. In the next d−1
frames, the model still hasn’t observed the collision (because of
the prediction delay), so it continues to predict movement along
the original trajectory, while the object continues to move away,
increasing the error. Once the model has seen the collision, it
“corrects” the prediction, and the error drops to its normal level.
The drop is also not immediate, since the model initially sees
only one frame of the new trajectory, and typically needs several
timesteps to accurately extrapolate the object’s future position.

Bottle (Fig. 8). In Fig. 8 we show our spatial misprediction
view of the bottle dataset. The data contains femto-photography
images of a laser pulse propagating through a plastic bottle [45]
(Fig. 6). We used models A (in orange), B (in magenta) and C (in
blue) to perform the prediction. As a result we obtain a visualization
highlighting regions of transitional behavior (Fig. 8). Roughly
speaking, the pulse moves from left to right, exhibiting different
phases: appearance of the initial pulse, transition into the diffuse
phase behind the bottle label, appearance of inter-reflections near
the neck of the bottle. Importantly, the complex model (in orange)
highlights only the transitional regions. Both the propagation of the
diffused pulse (in the center), and the propagation of the inital pulse
(on the left) are not exhibiting irregular behavior and are captured
by the model. The simpler models have a harder time predicting
it, resulting in a difference between the misprediction regions.
Similarly, the areas in the upper part of the dataset correspond
to the appearance of the reflection of the pulse (detected by all
models) and its propagation (shown by the simplest model in blue).

Hotroom (Fig. 9) We use the “hotroom” dataset (Fig. 6) to
show our results on spatially and temporally smooth data. It depicts
a simulation of air temperature in a room with a hot and a cold
plate on the bottom and the top, respectively. This produces a
dense smoothly-changing temperature field (we cut off neutral
temperatures in the transfer function to highlight the cold and

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 10

0 100 200 300 400
0

2

4

Time (t)

M
SE

(a) Initial spatial (top) and temporal (bottom) mis-
prediction view.

0 100 200 300 400
0

2

4

Time (t)

M
SE

(b) Spatial (top) amd temporal view (bottom) for
subrange.

(c) t = 190

(d) t = 243

(e) t = 308

Fig. 10: Interactive analysis of the “droplet” dataset. a: The models (orange and magenta in spatial view) highlight the initial droplets,
the expanding ring, a few larger droplet separations and several oscillating droplets. Two largest spikes in the temporal view correspond
to simulation timestep changes. b: After selecting a subrange, we no longer see the inital droplet collision and can better focus on the
locations of droplet separation. c, d, e: Single-timestep views showing exact locations of the prediction error (see vertical lines in b).

the hot air streams in Fig. 6). We use models A, B and C to
construct spatial and temporal views presented in Fig. 9. The
spatial misprediction regions correspond to three major events that
are also apparent in the temporal view: (1) the initial collision of
cold and hot streams produces (pillar-like structure in the middle),
(2) the collision of the streams with the plates of the opposite
temperature (asymmetric regions top and bottom), and (3) the
formation of two new air streams, after the initial fronts have
disappeared (side regions).

Droplet (Fig. 10). To demonstrate the interaction between the
temporal and spatial misprediction views, we have applied our
method to the droplet dataset. The dataset comes from a two-phase
flow simulation of two colliding droplets. After the initial collision,
the droplets form an expanding disk of fluid that consequently splits
into many secondary droplets. Drop collisions are highly relevant
in many technical applications, e.g., concerning fuel injection and
fire suppression. The data contains both temporal and spatial events,
providing an interesting test case for our approach. For our analysis,
we consulted with the domain scientists from the field of aerospace
thermodynamics who conducted the simulation.

Fig. 10a presents the temporal misprediction view of the data.
Although a lot of smaller events happen in the data, we can
distinguish the initial two-droplet phase with steady error (frames
0-70), disk expansion phase with increasing error (frames 70-130),
and a long tail of smaller spikes with an overall decrease in error,
as many droplets separate (causing spikes) and continue to travel
predictably (reducing the overall error). Of special interest to us
were the two biggest spikes at frames 62 and 394. The model’s
prediction contains massive errors that couldn’t be explained by

the data. After consulting the domain scientist we discovered that
the simulation has irregular timestep sizes, and the two spikes
in model’s error align with two abrupt changes of the simulation
timestep, effectively highlighting an irregular temporal event. In
Fig. 10a we also show the spatial misprediction view of the data,
obtained using the model A (in orange) and the model B (in
magenta). We also aggregate and render the original data in faint
green for context. To filter out the initial droplet phase and the
discovered simulation timestep changes, we select a temporal subset
of our misprediction data (Fig. 10b). Inspecting the corresponding
spatial view, we see several locations of irregular behavior: the
central regions, where many secondary droplets have separated, the
large ring corresponding to the ring separation, and four smaller
regions in the corners, where several large droplets have formed and
split off. We also see abrupt traces of several large droplets flying
off to the left and to the right, caused by their irregular oscillating
motion. To investigate further, we focus on a few smaller temporal
events, inspecting three individual timesteps (red lines in Fig. 10b).
The resulting spatial views (Fig. 10c, 10d, 10e) show where the
high errors occurred. In Fig. 10c and Fig. 10d we see the source
of the ring observed in the aggregated view: this is the location
where rings of fluid have separated from the initial expanding
disk. Fig. 10e highlights the secondary droplets that split off in
the center, as well as the four large droplets starting to form and
separate, producing the corner regions in the aggregated view.
Interestingly, we found an unexpected feature in the data: there
are four small regions of error in the center of Fig. 10c, which we
could not explain. After an investigation together with the domain
scientist it turned out, that the fluid disk contains small bubbles

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 11

t=61 130 180 245 263 286 305 352 367 380 390

Fig. 11: Timesteps of the droplet dataset that were automatically selected by finding maxima of smoothed model error (cf. Fig. 12).
High error locations are rendered in red. Several sparse important events are captured in the beginning: the initial collision, two disk
separations, outer disk break-up. The rest of the timesteps correspond to a more chaotic mass separation phase of the data.

0 100 200 300 400
0
1
2
3
4
5

Time (t)

M
SE

Original

Smoothed

Fig. 12: Smoothed prediction error on the “droplet” dataset. By
finding maxima of the smoothed prediction error we are able to
find key irregular events in the data.

of air caught during the collision. Its existence was previously
unknown and undetected using domain scientists’ current tools:
volume and vector visualization in ParaView and histograms of
droplet properties extracted via scripts (mass, surface, etc.). The
discovery of the irregular timesteps (believed to be an issue with
the pressure solver), as well as of the bubbles (known neither to us
nor the domain scientist) informally demonstrates the potential of
our domain-agnostic approach to detect unexpected data features.
Overall, navigation of the misprediction volumes allows us to get a
quick impression of the most complex temporal and spatial regions,
and then to use this information to “drill down” into the data,
studying individual spatiotemporal events.

8.2 Timestep selection

Next, we exemplify the results of our timestep selection approach
(Sec. 6.1) by means of the droplet collision dataset. We used the
“C64-C64-D256-D256” model to construct a misprediction volume.
The respective temporal misprediction graph is plotted in Fig. 12.
The time series was smoothed using bilateral filtering, using a
Gaussian kernel with STD of 5.0 for time and 1.0 for value. The
selected timesteps (corresponding to the error maxima) are marked
with vertical lines, and their renderings are presented in Fig. 11).
The first few selected timesteps represent several important events:
droplet collision, first ring separation, second ring separation, and
the break-up of the ring into multiple droplets. The later timesteps
correspond to several smaller separations and oscillating droplets.
We can see that our method chose timesteps around the time of
large key events and more densely sampled the temporal phase
with many smaller interactions. This technique could be used to
automatically select most significant irregular events, if manual
navigation of the misprediction views is not desired.

8.3 Ensemble data analysis

To evaluate our prediction-based ensemble dissimilarity measure,
we have applied it to a CFD ensemble (similar to the “vortex street”
dataset). The ensemble has three parameters: Reynolds number,

100
40
30
(a)

80
25
30
(b)

70
10
30
(c)

70
40
40
(d)

90
20
50
(e)

90
40
60
(f)

100
20
70
(g)

100
0
60
(h)

80
0
50
(i)

70
20
50
(j)

80
15
80
(k)

70
35
70
(l)

50
15
30
(m)

70
0
70
(n)

60
0
50
(o)

50
15
50
(p)

50
20
70
(q)

40
0
60
(r)

40
0
80
(s)

40
0
30
(t)

40
35
30
(u)

50
40
60
(v)

40
35
80
(w)

100
5
80
(x)

100
5
30
(y)

1.0 138.0

(a)

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)

(j)

(k)

(l)

(m)

(n)

(o)

(p)

(q)

(r)

(s)

(t)

(u)

(v)

(w)

(x)

(y)

Fig. 13: Our dissimilarity measure for a flow simulation ensemble.
The top row shows one timestep from each simulation. Groups of
members that exhibit similar behavior (e.g. turbulent) have low
dissimilarity (blue) to each other, but high dissimilarity (yellow)
towards other members.

obstacle offset and obstacle radius. To obtain a diverse set of
simulations we have randomly sampled the whole parameter space,
obtaining 25 simulations.

For computing our dissimilarity measure (Sec. 6.2) we trained
an instance of the “C128-D256” model for each member, and
performed a full set of cross-predictions (625 predictions in total).
The results are presented in Fig. 13. In the header we visualize
a single timestep of each ensemble member and specify its three
simulation parameter values. The same timestep has been used for
all members, aiming to give an impression of the whole ensemble.

The first observation is that the dissimilarity metric led to
ensemble members being roughly sorted according to how turbulent

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 12

they are. The most turbulent members were put on the left, with
members slowly becoming more laminar as we move to the right.
Looking at the dendrogram in the header, three high-level clusters
can be distinguished: strongly-turbulent (on the left), turbulent
(middle) and mostly-laminar (right).

When inspecting the heatmap, several groups of simulations
can be spotted. The most prominent group of members is (d -
j), which has high dissimilarity to many other members outside
of the group. This is due to their highly turbulent behavior that
doesn’t appear in other simulations. Importantly, the dissimilarity
inside this group is low, showing that our measure captures the
differences in local behavior, rather than just differences in value
(direct difference between two turbulent members would still be
high). Another significant group of simulations is (m - x), which
represents members with mostly laminar behavior. Again, they have
low dissimilarity in-between, and higher values to other members,
especially towards the highly turbulent ones. Within the groups
we can look at a few members that were added to the cluster later
(because of their slightly higher dissimilarity to the rest), e.g. (v)
and (w) that are significantly asymmetric.

Simulations (k, l) also form a low-dissimilarity pair and
represent a less distinct case of slower turbulent results. We observe
a medium dissimilarity to the most turbulent members, as well
as to the mostly laminar members. Presence of some turbulence
helps the models trained on them to perform better on the turbulent
members than the laminar-trained models. Similarly, member (o)
is also interesting in that it exhibits an in-between case: although it
belongs to the group of laminar members, it has lower dissimilarity
to the turbulent ones than the rest. During most of the simulation
time it exhibits laminar flow, but turns turbulent towards the end.
For this reason, the model trained on simulation (o) was more
successful in predicting the turbulent ensemble members, akin to
(k) and (l). Another special case is simulation (b) which is the
most turbulent member of the ensemble with very distinct local
behavior that leads to large prediction errors for most models.
Simulation (c) is similar to it in terms of turbulence, however, it has
a longer laminar setup phase, leading to lower dissimilarity values
overall (laminar models can still predict the first part correctly).
Finally, interesting outliers are members (a) and (y), which were
sorted away to the left and right sides by the hierarchical clustering
algorithm. Initially, they appear as a strongly-turbulent member and
a laminar member respectively. However, closer inspection showed
that the simulation files were corrupted, resulting in “flickering”
that hasn’t been observed in the ensemble before, but was identified
via our visualization. These artifacts caused increased errors when
predicting on the data, even for the model trained on it, thus
resulting in medium normalized cross-prediction error for most
other ensemble members. Overall, we found that our dissimilarity
metric produces results that correspond to what is intuitively and
qualitatively expected from comparing pairs of ensemble members,
which allows us to identify prominent features of the ensemble.

8.4 Parameter study
Next, we analyze the effect of our parameters. We look at the
prediction delay in Sec. 8.4.1 and at the patch size in Sec. 8.4.2.

8.4.1 Prediction delay
Prediction delay (Sec. 3.3) is the distance in time between the
last timestep provided to the model and the predicted timestep.
To demonstrate its effects, we perform prediction with ten “C64-
C64-D256-D256” models, each using a different delay on the

“vortex street” dataset, which has very fine temporal resolution. The
temporal misprediction view for each delay is presented in Fig. 14a.
As we can see in the cases of one- and two-frame delays, low
prediction delay has a very clear symptom: model prediction error
exhibits almost no variation. Since the prediction task is too easy,
the model is able to predict the whole dataset equally well. When
we increase the delay, we can observe an overall increase in the
error, as well as more pronounced differences between temporal
phases. Crucially, despite the quantitative variation between the
different series, all models trained with the prediction delay of
more than two frames highlight similar temporal events: growth
of the trail and of the error until timestep 180, transition to more
turbulent behavior until timestep 400, and eventually the onset of
fully-periodic behavior indicated by decreasing model error.

8.4.2 Patch size
Patch size is an important parameter for a local prediction approach,
since it defines what is local, i.e. what information is available to
the model. For consistency, we use the “vortex street” dataset and
perform prediction with eight “C64-C64-D256-D256” models. The
results are presented in Fig. 14b. An important property of predic-
tion for this fairly regular dataset is whether we can distinguish
the different temporal phases from the model’s misprediction. The
“contrast” between the setup and the periodic phases varies with
different patch sizes, but overall most models produce reasonable
results. However, there are two exceptions. First, a very restricted
patch size of 1x2x2 produces a constantly growing error graph,
showing that even high-capacity models cannot produce an accurate
prediction given insufficient information. Second, the very large
10x10x10 patch produces low error compared to other models, but
the misprediction graph of this model alone shows much smaller
differences between the temporal phases. A large model with a
very wide view can predict well even the complex setup phase.

8.5 Parameter selection

After discussing our two most important parameters and how they
impact the method (Sec. 8.4), we demonstrate our semi-automatic
approach to their selection.

The patch size and the prediction delay parameters control the
difficulty of the prediction problem: large delay (further ahead
prediction) and small patch size (less input) make the prediction
more difficult, while small delay and large patch size make it easier.
Since our technique differentiates spatiotemporal regions based
on prediction errors, it functions best between the extremes of
impossible and trivial prediction, when some regions are hard to
predict and some are not. A key observation is that as we approach
these extremes, models of different capacity tend to produce similar
errors. When the prediction is too difficult, all the models display
similarly large errors, because additional model capacity does not
help when information is missing. And when the prediction is
too easy, all the models display similarly low errors, since even
the simplest models can predict slow smooth processes. Thus, to
perform parameter selection we compare the models’ prediction
errors and maximize their diversity, favoring settings that lead to
larger differences between simple and complex models.

Specifically, we run our method using multiple models and
compute misprediction volumes as described in Sec. 3.3. Then,
for each spatiotemporal position we compute the diversity as the
difference between the smallest and largest errors for this point
among the different models. Then, we average this value over the

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 13

0 200 400 600 800 1,000
0

1

2

3

Time (t)

M
SE

d=1
d=2
d=3
d=4
d=5
d=6
d=7
d=8
d=9
d=10

(a) Prediction delay

0 200 400 600 800 1,000
0
1
2
3
4
5
6
7
8

Time (t)

M
SE

15x5x5

10x10x10

10x5x5

10x3x3

5x5x5

3x5x5

3x3x3

1x2x2

(b) Patch size

Fig. 14: Parameter study on the “vortex street” dataset, showing temporal misprediction plots. a: Models with a delay below three
frames do not detect any events because it is easy to predict a few frames ahead.b: Most of the models successfully highlight the
complexity of the setup phase (frames 100-400). However, the models with very small (in orange) or very large (in blue) patch sizes do
not clearly distinguish it.

1x12

3x32

5x52

7x72

11x112

d=1 d=3 d=5 d=7

0.0 1.5

(a) “vortex street”

3x33

5x53

7x73

11x113

d=1 d=3 d=5 d=7

0.7 1.9

(b) “hotroom”

Fig. 15: Our parameter space visualization for two datasets. We
show a grid of bar charts for different values of patch size (rows)
and prediction delay (columns). Each bar chart encodes the mean
errors of the four models (sorted complex to simple, left to right).
Additionally we compute an error diversity criterion which we
use to color each cell. Higher delays with larger patch sizes lead
to higher error diversity, which indicates a prediction problem of
appropriate difficulty.

whole dataset and divide it by the average prediction error of all
the models, effectively computing the relative average prediction
error range as our selection criterion. The normalization allows for
better comparison across different configurations. Overall, larger
error ranges indicate better parameter settings.

Using this information we construct a parameter space visual-
ization. We render a grid, where each row corresponds to a patch
size value and a column to a prediction delay value, and show a bar
chart in each cell. The bar chart displays the average error of each
model (ordered complex to simple, left-to-right), allowing the user
to see a summary of models’ performance. Additionally, we color
each bar chart (grid cell) according to our error range criterion,
showing how appropriate each configuration setting is in terms of
local error diversity.

In Fig. 15a we show results on the “vortex street” dataset,
using models “C64-C64-D256-D256”, “D256”, “D64-D32” and
“D32-D16” (left to right). Here we also include the trivial patch
size setting of 1x12. First, as to be expected when considering
prediction difficulty, larger patch size and lower prediction delays
lead to lower overall errors. Importantly, when the patch size is

0 200 400
0

2

4

6

M
SE

(a) 3×33, d = 1

0 200 400

(b) 3×33, d = 7

0 200 400
0

2

4

6

M
SE

(c) 11×113, d = 1

0 200 400

(d) 11×113, d = 5

Fig. 16: Temporal misprediction for four different parameter
configurations on the “hotroom” dataset (cf. Fig. 15). With low
prediction delay (a, c) prediction is too easy and leads to models
showing few errors, missing an event around frame 370. With
small patch size (a, b) there is little difference between simple
and complex models. Larger patch size and delay (d) allow for
detection of all three events and distinction of temporal differences
between the models.

too small (1x12) or the delay is too low (d = 1) the models show
very little diversity, either failing or succeeding together. But when
the patch size is large enough, larger delays lead to more diversity,
since more complex models can still predict well enough, while
the simpler models fail. Here specifically we find that patch sizes
above 5x52 and delays above 5 lead to best results.

Next, we performed experiments on the “hotroom” dataset,
using the same four models as before. Since 3D datasets are much
larger and generate a lot of input data, we introduced stronger
patch undersampling (pu = 10−4), which leads to somewhat noisier
results, but still allows trends to be studied. Thus, we can perform a
parameter study faster, and then if needed run the core method with
more data using the chosen parameter values. We demonstrate the
results in Fig. 15b. Overall, we see a similar pattern: small patch
sizes lead to uniformly large errors, while larger delays improve
error diversity, especially for larger patch sizes. In this case, all
the settings with 11x113 patch size lead to larger error ranges, this
is explained by fact that very simple non-convolutional models

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 14

(a) 3×33, d = 7 (b) 7×73, d = 5

Fig. 17: Spatial misprediction views for configurations with low
(a) and high (b) error diversity on “hotroom”. When the prediction
problem is hard and diversity is low, different models produce
many large errors and highlight similar regions, however when
the problem has suitable difficulty we can distinguish regions of
different irregularity.

tend to perform worse on very large 3D patches. For the “hotroom”
we find patch sizes of at least 7x73 and the delay of 5 as the
most appropriate. In general, we recommend picking the largest
patch size that is computationally feasible and the delay value that
maximizes model error diversity.

We also investigated temporal misprediction graphs for four
different settings using the most complex and the simplest mod-
els (Fig. 16). As we can see, runs with small delay (Fig. 16a, 16c)
tend to have very smooth low-error curves and miss the stream
emergence event around frame 370. The run in Fig. 16b (due to its
larger delay) highlights all three events, but both models provide
identical information. The configuration with larger patch size
and large delay (Fig. 16d) further improves this result, with the
complex model clearly distinguishing the three significant events,
and the simpler model also showing a decreasing error trend as
the air becomes more diffused. In Fig. 17 we also show the spatial
misprediction views for two configurations: one with low and one
with high error range criterion values. We observe that when the
prediction problem is too hard (Fig. 17a), similarly to the temporal
view (Fig. 16b), all models fail more often and in similar regions.
But when we increase the patch size, and thereby error diversity, we
can better separate different irregular regions, e.g. regions on the
sides corresponding to later air stream formation are not showing
errors from the most complex model (in orange).

Crucially, as discussed above, most parameter configurations
yield similar results, with particularly poor settings being easy to
avoid using either our selection method or minor prior knowledge
of the data. Furthermore, we found that the parameter space
visualization provides further insight into the data and can be
used to complement our core technique, e.g. we see that for the
“hotroom” prediction delay has a much smaller impact on model
error compared to “vortex street”, which points to a much smoother
and predictable nature of the data.

8.6 Multi-field volumes

So far we have concerned ourselves with prediction on scalar vol-
umes. However, data coming from scientific simulations is typically
multifield, containing velocity vectors, pressure, temperature and
other relevant properties that may be essential for the prediction
task. In this section we supply additional fields as input to the
model and investigate how this affects the prediction, and thereby
the detected spatiotemporal regions.

Dataset Pred. delay Model MSE
cylinder multi-field 1 C64-C64-D256-D256 5.21
cylinder scalar 1 C64-C64-D256-D256 15.53
cylinder multi-field 1 D64 10.93
cylinder scalar 1 D64 14.03
cylinder multi-field 1 D1 31.54
cylinder scalar 1 D1 31.83
cylinder multi-field 6 C64-C64-D256-D256 24.64
cylinder scalar 6 C64-C64-D256-D256 45.42
cylinder multi-field 6 D64 43.97
cylinder scalar 6 D64 53.59
cylinder multi-field 6 D1 167.03
cylinder scalar 6 D1 176.27

TABLE 1: Comparison of model error using scalar and multivariate
prediction. Multivariate input data leads to fewer errors, especially
for larger models and far-ahead prediction, since they have more
capacity to leverage the additional information.

0 100 200 300 400
0

1

2

3

4

Time (t)
M

SE

Multivariate
Scalar

(a)

(b)

(c)
Scalar better

Multivar better

Fig. 18: Comparison of scalar and multivariate prediction on
“droplet”. a: Temporal misprediction views: scalar prediction is less
accurate overall, but detects similar temporal events. b, c: Spatial
difference between models’ error regions, with red showing where
the scalar model had larger errors, and blue – the opposite. The
multivariate model is able to better predict the disk expansion (b)
and small droplet separation (c) events.

We performed a set of experiments on one of the turbulent
CFD ensemble members. The model was supplied with velocity
vectors, velocity magnitude and pressure fields, while predicting
the velocity magnitude. We used three models of different capacity
(“C64-C64-D256-D256”, “D64-D32” and “D1”), two prediction
delays (one and six frames) and compared to predictions using
only the scalar velocity magnitude field as input (Table 1). As we
can see, providing additional fields to the model results in lower
overall prediction error. The differences are more significant when
we increase the delay: predicting further into the future is easier
with the additional information. We also notice that larger models
benefit more from the additional fields, since they can represent a
more complex relationship between the input fields.

To investigate the differences in prediction error regions be-
tween the multifield and scalar models we performed an additional
experiment on the droplet dataset. We compared a multifield model
that received volume-of-fluid, pressure and velocity vector fields,
to a scalar model that received only the volume-of-fluid values.
The multifield model achieved an overall MSE of 0.14 and the
scalar model an MSE of 0.23 (values are relatively low due to
large amounts of empty space in the dataset). Thus, similarly
to the previous experiments, providing more data allowed for
an overall more accurate prediction. In Fig. 18a we present the
temporal misprediction of both models, where we see that both
highlight the same events, with the only significant difference

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 15

occurring around the initial droplet collision (frames 50-100). The
multivariate model has lower errors overall, though the scalar model
“recovers” slightly faster due to focusing on the motion of fluid and
being unaffected by changes within other fields. In Fig. 18b we
show the difference between the models’ absolute errors at frame 62
around the initial collision. We see that the scalar model produces
larger errors around the expanding disk between two droplets,
while the multivariate model is able to use the high pressure values
that accompany this expansion to distinguish and more accurately
predict this behavior. Then, we inspected the data for other regions
of significant deviation and found several spatially-smaller regions
near ligament separations, where the multivariate model produces
a more accurate prediction (Fig. 18c).

Overall, we found that although multifield and scalar models
are generally similar, providing and withholding fields from the
model can in some cases affect the results qualitatively. Both
approaches can be used depending on the application scenario,
while combining them can act as an additional analysis tool.

8.7 Performance

We provide performance measurements of our implementation
in Table 2. All tests have been performed on a machine with an
Intel Xeon E5-2630 v4 CPU and an Nvidia Tesla V100 GPU.
The dataset size is provided in the format Time × Width ×
Height × Depth, and pu refers to the undersampling probability
(Sec. 3.3). We also provide the number of training epochs that
passed before the convergence condition was triggered (Sec. 7). We
used separate configurations for 2D and 3D datasets, with stronger
undersampling and a smaller patch size for the 3D datasets, which
otherwise generate superfluous amounts of data for our relatively
simple models. Overall we can see that prediction often takes a
considerable amount of the execution time. This is due to the fact
that we cannot undersample the prediction data and need to obtain a
prediction for each data voxel. The prediction patches do not fit into
RAM and have to be extracted out-of-core, triggering expensive
reads from the hard drive. For datasets with large amount of empty
space (e.g. droplet) we can reduce the amount of processing (see
Sec. 7), while others don’t allow this optimization.

For our parameter selection study (Sec. 8.5) on the “vortex
street” dataset we performed 80 runs, spending a total of 64 hours
to train the models and 108 minutes to perform the predictions.
For the “hotroom” dataset (500x181x91x181 in size) we used
stronger undersampling (pu = 10−4) to perform 64 runs with a
total of 54 hours to train and 56 hours to predict. Although the time
required to sample the parameter space is significant, the task is
highly parallelizable and has linear speedup, since each experiment
can be performed on a separate machine.

9 DISCUSSION

Local prediction. Our choice of making the prediction based
on local information yields several advantages, including training
performance, translation-invariance and model simplicity (Sec. 3.3).
It also introduces an additional parameter – the patch size, which
can have an impact on prediction performance both in terms of
execution time and accuracy (Sec. 8.4.2). Although locality is often
a reasonable assumption for scientific data, relationships extending
beyond the patch size cannot be captured by our models. When
such effects need to be accounted for, the models could be extended
to incorporate global context, e.g., by using downsampled data.

Dataset Dataset size Patch size Train set pu Model∗ Train
(min.)

Predict
(min.)

Epoch

droplet 400x256x256x256 5x53 712.1K 0.01 A 35.0 171.5 76
droplet 400x256x256x256 5x53 712.1K 0.01 B 79.6 170.7 173
droplet 400x256x256x256 5x53 714.0K 0.01 C 135.3 177.6 315
spheres 200x128x128x128 5x53 185.2K 0.01 A 7.3 16.6 60
spheres 200x128x128x128 5x53 185.2K 0.01 B 56.7 16.3 500
spheres 200x128x128x128 5x53 185.4K 0.01 C 16.5 16.3 146
bottle 465x450x215x1 15x52 3.4M 0.1 A 87.9 8.8 71
bottle 465x450x215x1 15x52 3.4M 0.1 B 234.2 8.6 200
bottle 465x450x215x1 15x52 3.4M 0.1 C 26.2 10.3 23
vortex st. 800x101x301x1 15x52 1.8M 0.1 A 115.9 5.8 173
vortex st. 800x101x301x1 15x52 1.8M 0.1 B 157.3 5.8 250
vortex st. 800x101x301x1 15x52 1.8M 0.1 C 31.4 5.6 52

TABLE 2: Performance of our local prediction implementation
with different datasets and models. We undersample the training
data with probability pu and cache prediction results for empty
space. Large and dense 3D volumes require the most computation.
∗ Model A: C64-C64-D256-D256, Model B: D256, Model C: D1.

Performance. A limiting factor of our approach is perfor-
mance. The performance costs come from training multiple neural
networks on large data, as well as evaluating them to obtain
predictions (Table 2). Although smaller patch sizes combined
with undersampling are often sufficient to produce accurate results,
analyzing even moderately-sized datasets may take hours and
days. Fortunately, the approach has large parallelization potential.
Both neural network training and prediction can be distributed in
terms of data across multiple machines, and parameter studies are
even easier to parallelize. Pretrained and reused models can be
investigated for applications within the same domain or simulation
ensembles (cf. Sec. 8.3). Finally, a lot of effort is currently put into
development of specialized ML hardware architectures, which may
provide further acceleration benefits in the future.

Temporal interpolation Our approach operates by detecting
regions that are hard to predict based on past events. We have
shown that by varying the prediction delay we can vary the
difficulty of prediction, increasing it for datasets with fine temporal
resolution (Sec. 8.4.1). However, this also implies that in the
opposite case of very coarse temporal resolution the prediction
task can become too hard, causing the models to produce high
errors everywhere, making it impossible to distinguish behavior of
different complexity. An interesting extension to address this case
could be to simplify the prediction problem by considering not only
the past, but the future too, essentially performing interpolation,
which would have lower resolution requirements than extrapolation.

Sequence modeling. For simplicity and generality we used
relatively basic neural network models (Sec. 3.2, Sec. 7). However,
building upon our findings with simpler models, more complex
and specialized architectures could be used to improve the results.
For example, recurrent neural networks are being successfully used
to model temporal data and might provide a more meaningful
prediction for spatiotemporal volumes as well. Moreover, they
can be applied to temporal sequences of variable length, which
can produce additional information about the local temporal
complexity via monitoring the length of accurately predicted
sequences. Similar information could also be obtained with current
models by performing prediction on the results of past predictions
and observing how fast the error accumulates.

Learning physics. An interesting question that comes up in the
context of applying neural networks to scientific data is whether the
network learns the underlying physical laws. Conceptually, when
doing prediction on simulation data one would expect the future
values to be completely predictable, given that all relevant fields

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 16

are available. After all, the values are computed by a numerical
solver using deterministic principles. Furthermore, the exact update
rules used during integration are often rather simple functions of
local information (possibly even linear, e.g. for diffusion). Thus,
our models should perform almost-perfect prediction, resulting in
no significant errors and detecting no irregular regions.

However, as demonstrated by the cross-prediction performance
on ensemble data (Sec. 8.3), learning to accurately predict perfor-
mance of one simulation run might still produce significant errors
on a different run, although the respective simulation code has
not changed. It appears that rather than learning the underlying
physics, the model efficiently represents, stores and interpolates the
observed behavior. But this presents an advantage for visualization:
by capturing different local scenarios the model allows us to
distinguish different processes in the data, helping us to analyze
the produced results, rather than the underlying physical principles.

Nevertheless, to validate the conceptual possibility of a “perfect”
prediction for simulation data, we performed an experiment on
one of the turbulent ensemble members (used in Sec. 8.6), but
with all the solver timesteps being exported, increasing the number
of timesteps from 54 to 32000. Using the linear “D1” model we
achieved an MSE of 0.01, i.e. a practically perfect prediction (cf. Ta-
ble 1). This shows that given exhaustive information the underlying
simulation rules can be learned for a given dataset.

In practice however, the simulation codes rarely export all the
values computed at runtime (cf. in situ visualization), with a single
data timestep often corresponding to hundreds of solver steps. We
can also control this using the prediction delay parameter (Sec. 3.3).
Multiple simple updates to interacting variables can compound to
complex functions, making the prediction significantly harder in
some regions and allowing us to distinguish different behavior in
visualization.

Physical constraints. While we have used models with no
physical or domain-specific assumptions, there is a number of
generic physical properties that could be explicitly modeled: energy
and mass conservation, flow incompressibility, etc. These could be
introduced to the model’s loss function to aid in doing physically-
accurate predictions, or to find spatiotemporal regions where the
model violates these conditions.

Enhancing user control. Currently the user can influence the
results by defining models and some parameters before running our
method, and explore the results interactively afterwards (Sec. 8.1).
However, our approach could be extended to provide further
control to the analyst. On the one hand, ML-based approaches
like one-shot learning could be explored, reusing the feature space
learned by the models to detect more specific behavior based
on the analyst’s feedback. On the other hand, more traditional
visualization techniques like clustering can be applied to discover
further instances of similar behavior or filter detected irregularities.

10 CONCLUSION

In this paper we presented our approach to detecting regions of
irregular behavior in spatiotemporal data. We used an ensemble of
machine learning models to perform predictions of local behavior,
quantifying the resulting error and using it as an indicator of
complexity. The resulting misprediction volumes were then used to
construct aggregated spatial and temporal views of high-error re-
gions, effectively focusing on unpredictable events and filtering out
trivial behavior. We demonstrated that models of varying capacity
have different “sensitivity” to irregular behavior, highlighting areas

with different degrees of irregularities. By using generic neural
network architectures and no manually-defined features, we were
able to detect and visualize meaningful spatiotemporal events in the
data without making any dataset- or domain-specific assumptions.

We also introduced two additional applications of local predic-
tion models. Based on the analysis of temporal irregularity detected
by several models, we performed adaptive timestep selection,
picking timesteps in which significant events and transitions
occurred, while avoiding repetitive periodic behavior. Furthermore,
we proposed a cross-prediction-based dissimilarity measure for
the analysis of ensemble data, showing that it captures expressive
qualitative differences in flow simulation behavior.

Finally, after reviewing the current limitations, we discussed
future extensions, including parallelization, modeling of physical
assumptions and improvements in user interaction.

ACKNOWLEDGMENTS

This work is funded by the Deutsche Forschungsgemeinschaft
(DFG, German Research Foundation) under Germany’s Excellence
Strategy – EXC-2075 (SimTech) – 390740016.

REFERENCES

[1] A. Joshi and P. Rheingans, “Illustration-inspired techniques for visualizing
time-varying data,” in Visualization, 2005. VIS 05. IEEE, 2005, pp. 679–
686.

[2] A. Lu and H.-W. Shen, “Interactive storyboard for overall time-varying
data visualization,” in Visualization Symposium, 2008. PacificVIS ’08.
IEEE Pacific, 2008, pp. 143–150.

[3] X. Tong, T.-Y. Lee, and H.-W. Shen, “Salient time steps selection from
large scale time-varying data sets with dynamic time warping,” in Large
Data Analysis and Visualization (LDAV), 2012 IEEE Symposium on, 2012,
pp. 49–56.

[4] S. Frey and T. Ertl, “Flow-based temporal selection for interactive volume
visualization,” Computer Graphics Forum, 2016.

[5] J.-P. Balabanian, I. Viola, T. Möller, and E. Gröller, “Temporal styles for
time-varying volume data,” in Proceedings of 3DPVT’08 - the Fourth
International Symposium on 3D Data Processing, Visualization and
Transmission, S. Gumhold, J. Kosecka, and O. Staadt, Eds., June 2008,
pp. 81–89.

[6] L. Liu, D. Silver, K. Bemis, D. Kang, and E. Curchitser, “Illustrative
visualization of mesoscale ocean eddies,” Computer Graphics Forum,
vol. 36, no. 3, pp. 447–458, 2017.

[7] Z. Fang, T. Möller, G. Hamarneh, and A. Celler, “Visualization and
exploration of time-varying medical image data sets,” in Proceedings of
Graphics Interface 2007, ser. GI ’07. New York, NY, USA: ACM, 2007,
pp. 281–288.

[8] T.-Y. Lee and H.-W. Shen, “Visualizing time-varying features with tac-
based distance fields,” in Visualization Symposium, 2009. PacificVis ’09.
IEEE Pacific, 2009, pp. 1–8.

[9] ——, “Visualization and exploration of temporal trend relationships in
multivariate time-varying data,” IEEE Vis. Comput. Gr., vol. 15, no. 6, pp.
1359–1366, 2009.

[10] C. Wang, H. Yu, and K.-L. Ma, “Importance-driven time-varying data
visualization,” IEEE Vis. Comput. Gr., vol. 14, no. 6, pp. 1547–1554,
2008.

[11] S. Frey, F. Sadlo, and T. Ertl, “Visualization of temporal similarity in
field data,” IEEE Transactions on Visualization and Computer Graphics,
vol. 18, pp. 2023–2032, 2012.

[12] S. Dutta and H. W. Shen, “Distribution Driven Extraction and Tracking
of Features for Time-varying Data Analysis,” IEEE Transactions on
Visualization and Computer Graphics, vol. 22, no. 1, pp. 837–846, Jan.
2016.

[13] F.-Y. Tzeng and K.-L. Ma, “Intelligent Feature Extraction and Tracking
for Visualizing Large-Scale 4D Flow Simulations,” in Supercomputing,
2005. Proceedings of the ACM/IEEE SC 2005 Conference, Nov. 2005, pp.
6–6.

[14] C. Muelder and K. L. Ma, “Interactive feature extraction and tracking by
utilizing region coherency,” in 2009 IEEE Pacific Visualization Symposium,
Apr. 2009, pp. 17–24.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS 17

[15] J. Woodring, C. Wang, and H.-W. Shen, “High dimensional direct
rendering of time-varying volumetric data,” in Visualization, 2003. VIS
2003. IEEE, 2003, pp. 417–424.

[16] B. Bach, P. Dragicevic, D. Archambault, C. Hurter, and S. Carpendale,
“A descriptive framework for temporal data visualizations based on
generalized space-time cubes,” Comput. Graph. Forum, 2016.

[17] S. Frey and T. Ertl, “Progressive direct volume-to-volume transformation,”
IEEE Transactions on Visualization and Computer Graphics, vol. 23,
no. 1, pp. 921–930, Jan 2017.

[18] S. Frey, “Sampling and estimation of pairwise similarity in spatio-temporal
data based on neural networks,” Informatics, vol. 4, no. 3, 2017.

[19] U. Bordoloi and H.-W. Shen, “View Selection for Volume Rendering,” in
Proceedings of the IEEE Visualization Conference, vol. 62, Nov. 2005, pp.
487–494.

[20] I. Viola, M. Feixas, M. Sbert, and M. E. Groller, “Importance-Driven
Focus of Attention,” IEEE Transactions on Visualization and Computer
Graphics, vol. 12, no. 5, pp. 933–940, Sep. 2006.

[21] M. Chen and H. Jaenicke, “An Information-theoretic Framework for Visu-
alization,” IEEE Transactions on Visualization and Computer Graphics,
vol. 16, no. 6, pp. 1206–1215, Nov. 2010.

[22] Y. Wang, W. Chen, J. Zhang, T. Dong, G. Shan, and X. Chi, “Efficient Vol-
ume Exploration Using the Gaussian Mixture Model,” IEEE Transactions
on Visualization and Computer Graphics, vol. 17, no. 11, pp. 1560–1573,
Nov. 2011.

[23] H. Jänicke, A. Wiebel, G. Scheuermann, and W. Kollmann, “Multifield
visualization using local statistical complexity,” IEEE Transactions on
Visualization and Computer Graphics, vol. 13, no. 6, pp. 1384–1391, Nov.
2007.

[24] K. L. Ma, “Machine learning to boost the next generation of visualization
technology,” IEEE Computer Graphics and Applications, vol. 27, no. 5,
pp. 6–9, Sept 2007.

[25] A. Endert, W. Ribarsky, C. Turkay, B. Wong, I. Nabney, I. Dı́az Blanco,
and F. Rossi, “The state of the art in integrating machine learning into
visual analytics,” 3 2017.

[26] R. Fuchs, J. Waser, and M. E. Groller, “Visual Human+Machine Learning,”
IEEE Transactions on Visualization and Computer Graphics, vol. 15, no. 6,
pp. 1327–1334, Nov. 2009.

[27] P. Klemm, S. Saalfeld, K. Lawonn, M. Rak, H. Völzke, K. Hegenscheid,
and B. Preim, “Interactive Visual Analysis of Lumbar Back Pain
What the Lumbar Spine Tells About Your Life,” in IVAPP 2015 -
6th International Conference on Information Visualization Theory and
Applications; VISIGRAPP, Proceedings, Mar. 2015.

[28] T. Kohonen, “The self-organizing map,” Proceedings of the IEEE, vol. 78,
no. 9, pp. 1464–1480, Sep. 1990.

[29] G. Andrienko, N. Andrienko, S. Bremm, T. Schreck, T. von Landesberger,
P. Bak, and D. Keim, “Space-in-time and time-in-space self-organizing
maps for exploring spatiotemporal patterns,” in Proceedings of the
12th Eurographics / IEEE - VGTC Conference on Visualization,
ser. EuroVis’10. Chichester, UK: The Eurographs Association;
John Wiley; Sons, Ltd., 2010, pp. 913–922. [Online]. Available:
http://dx.doi.org/10.1111/j.1467-8659.2009.01664.x

[30] D. Sacha, M. Kraus, J. Bernard, M. Behrisch, T. Schreck, Y. Asano,
and D. A. Keim, “Somflow: Guided exploratory cluster analysis with
self-organizing maps and analytic provenance,” IEEE Transactions on
Visualization and Computer Graphics, vol. 24, no. 1, pp. 120–130, Jan
2018.

[31] M. Berger, J. Li, and J. A. Levine, “A Generative Model for Volume
Rendering,” IEEE Transactions on Visualization and Computer Graphics,
vol. 25, no. 4, pp. 1636–1650, Apr. 2019.

[32] J. Han, J. Tao, and C. Wang, “FlowNet: A Deep Learning Framework
for Clustering and Selection of Streamlines and Stream Surfaces,” IEEE
Transactions on Visualization and Computer Graphics, pp. 1–1, 2018.

[33] A. Hassanien, M. Elgharib, A. Selim, S.-H. Bae, M. Hefeeda, and W. Ma-
tusik, “Large-scale, Fast and Accurate Shot Boundary Detection through
Spatio-temporal Convolutional Neural Networks,” arXiv:1705.03281 [cs],
May 2017.

[34] M. Gygli, “Ridiculously Fast Shot Boundary Detection with Fully
Convolutional Neural Networks,” arXiv:1705.08214 [cs], May 2017.

[35] S. R. Kulkarni and G. Harman, “Statistical learning theory: A tutorial,”
Wiley Interdisciplinary Reviews: Computational Statistics, vol. 3, no. 6,
pp. 543–556, Nov. 2011.

[36] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press,
2016.

[37] V. N. Vapnik and Chervonenkis, A. Ya., “On the Uniform Convergence
of Relative Frequencies of Events to Their Probabilities,” Theory of
Probability & Its Applications, vol. 16, no. 2, May 1969.

[38] H. Obermaier and K. I. Joy, “Future challenges for ensemble visualization,”
IEEE Computer Graphics and Applications, vol. 34, no. 3, pp. 8–11, May
2014.

[39] K. Potter, A. Wilson, P.-T. Bremer, D. Williams, C. Doutriaux, V. Pascucci,
and C. R. Johnson, “Ensemble-Vis: A Framework for the Statistical
Visualization of Ensemble Data,” in Proceedings of the 2009 IEEE
International Conference on Data Mining Workshops, ser. ICDMW ’09.
Washington, DC, USA: IEEE Computer Society, 2009, pp. 233–240.

[40] J. Waser, R. Fuchs, H. Ribicic, B. Schindler, G. Bloschl, and E. Groller,
“World Lines,” IEEE Transactions on Visualization and Computer Graph-
ics, vol. 16, no. 6, pp. 1458–1467, Nov. 2010.

[41] S. Bruckner and T. Moller, “Result-Driven Exploration of Simulation
Parameter Spaces for Visual Effects Design,” IEEE Transactions on
Visualization and Computer Graphics, vol. 16, no. 6, pp. 1468–1476, Nov.
2010.

[42] M. Hummel, H. Obermaier, C. Garth, and K. I. Joy, “Comparative Visual
Analysis of Lagrangian Transport in CFD Ensembles,” IEEE Transactions
on Visualization and Computer Graphics, vol. 19, no. 12, pp. 2743–2752,
Dec. 2013.

[43] M. Sedlmair, C. Heinzl, S. Bruckner, H. Piringer, and T. Möller, “Visual
Parameter Space Analysis: A Conceptual Framework,” IEEE Transactions
on Visualization and Computer Graphics, vol. 20, no. 12, pp. 2161–2170,
Dec. 2014.

[44] Z. Bar-Joseph, D. K. Gifford, and T. S. Jaakkola, “Fast optimal leaf
ordering for hierarchical clustering,” in Intelligent Systems in Molecular
Biology, vol. 17, Jun. 2001, pp. 22–29.

[45] A. Velten, D. Wu, A. Jarabo, B. Masia, C. Barsi, C. Joshi, E. Lawson,
M. Bawendi, D. Gutierrez, and R. Raskar, “Femto-photography: Capturing
and visualizing the propagation of light,” ACM Trans. Graph., vol. 32,
no. 4, pp. 44:1–44:8, 2013.

[46] D. P. Kingma and J. Ba, “Adam: A Method for Stochastic Optimization,”
arXiv:1412.6980 [cs], Dec. 2014.

Gleb Tkachev received his Masters degree in
computer science from the University of Stuttgart,
Germany. He is a PhD student at the University of
Stuttgart Visualization Research Center (VISUS).
His current research interests are focused on
combining visual computing and machine learn-
ing methods for the analysis of scientific data.

Steffen Frey received his PhD degree in com-
puter science from the University of Stuttgart,
Germany. Currently, he is a PostDoc at the Uni-
versity of Stuttgart Visualization Research Center
(VISUS). His research interests are in visual
analysis techniques for large and complex data
in scientific visualization, with a particular focus
on performance-related aspects and expressive
visual representations of dynamic processes.

Thomas Ertl received the MS degree in com-
puter science from the University of Colorado
at Boulder and the PhD degree in theoretical
astrophysics from the University of Tübingen. He
is a full professor of computer science with the
University of Stuttgart, Germany in the Visualiza-
tion and Interactive Systems Institute (VIS) and
the director of the Visualization Research Center
(VISUS). His research interests include visualiza-
tion, computer graphics, and human computer
interaction.

http://dx.doi.org/10.1111/j.1467-8659.2009.01664.x

	Introduction
	Related Work
	Prediction-based irregularity analysis
	Concept and Outline
	Prediction model
	Local prediction problem
	Multiple prediction models

	Causes of prediction error
	Uncertainty
	Uniqueness
	Complexity

	Misprediction Visualization
	Further applications
	Timestep selection
	Ensemble data analysis

	Implementation
	Results
	Spatial and temporal misprediction views
	Timestep selection
	Ensemble data analysis
	Parameter study
	Prediction delay
	Patch size

	Parameter selection
	Multi-field volumes
	Performance

	Discussion
	Conclusion
	References
	Biographies
	Gleb Tkachev
	Steffen Frey
	Thomas Ertl

