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APPENDIX

Here we provide our parameter study results and the extended
version of figures that we shortened in the paper. In Fig. A1, we
present the results of the parameter study, where we vary the size
of the spatiotemporal neighborhood (offsets os,ot ) and measure
the resulting query accuracy. Despite significant changes to the
parameter values, the model’s performance remains consistent
across several different queries, especially for the larger queries.

In Fig. A2, we show a larger version of Fig. 3, including more of
the best-matching timesteps. As we see in Fig. A2a and Fig. A2b,
the model successfully finds many examples of deposition and
splashing, showing homogeneous results overall. In Fig. A2c, we
show a different non-filtered version of the fluid column query.
When searching for a rare event with a single example patch, we
get noisier results but still find other members displaying the same
behavior (ID 71 and 62).

Fig. A3 is an extended Fig. 5 from the paper, showing more
matches for both our model and the SIFT-based method on the
droplet ensemble. We observe that the results are consistent for
these matches, i.e., both methods perform well on the crown query,
but our model produces more robust results on the splashing query,
where SIFT is unable to find good keypoint locations.

Fig. A4 displays our prototype system on the “droplet splash”
ensemble. Here we search for examples of splashing, which we
express with a small query that has positive splashing and negative
crown examples. Similarly to the results in Fig. A2, we see that
our search method finds other cases of splashing in the ensemble.
Like in the cylinder example from the paper (Fig. 2), the model
also roughly determines the point of transition from a crown to a
spray, which happens at different temporal locations in different
ensemble members. This suggests our matching technique is able
to locate events temporally.

Figures A6 and A7 are straightforward extensions of paper
figures 8 and 9 respectively. The difference here is that we include
more query sizes (“2+0-” and “2+2-”) and show the performance
of additional methods (Hist-L1, SSIM) and encoder models (VGG-
tune-a, VGG-tune-l). The additional query sizes show a gradual
change in the model’s performance as we change the query
size: larger queries generally lead to better accuracy and reduced
variance both wrt. query (A6) as well as the training process (A7).
Hist-L1 is similar to Hist-EMD, but we use the L1 distance between
the histograms, and SSIM is the negative of the Structural Similarity
Index Measure (we require a dissimilarity measure for our ranking
score). We see that these methods perform similarly to other generic
baselines and are outperformed by our model. VGG-tune-a and
VGG-tune-l are the pre-trained VGG models that were fine-tuned
by using them as the encoder in our siamese architecture, trained
on the pretext task as usual. For VGG-tune-a, we fine-tuned all the
layers of the model (up to “fc1”, which we use as the encoder output
for VGG), while for VGG-tune-l, we only tuned the last layer. Since
we are using our self-supervised setup to fine-tune the VGG model,
this is essentially just a different larger architecture of the encoder
that was pre-trained on a generic image dataset. As we can see
in Fig. A6, fine-tuning on the pretext task improves the performance
of the VGG model. However, our smaller encoder still performs
better overall, especially on the larger queries. Conceptually, VGG
is very similar to our encoder (a rather standard convolutional
model), so it performs similarly but likely suffers a little due to
being pre-trained on a significantly different image dataset and is
just too large for the task at hand.
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Fig. A1: Results of a parameter study on the cylinder ensemble. The experiment setup is similar to Fig. 8 with metrics excluding the
query members to better assess the generalization performance. Despite the changes in both the spatial and temporal offsets used during
the model training, all models produce similar results. This indicates that our method is not overly sensitive to the parameters, which can
be chosen with some minor knowledge of the dataset size.
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(a) A query for crowns.
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(b) A query for droplet splashing.
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(c) A query for fuild jets.
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(d) MSE results for the query from b.

Fig. A2: An extended version of Fig. 3. Query results on the droplet splash dataset. In the top left we render the query patches (their first
timestep). Positive examples are marked with + and negative with -. We take 500 best matching patches and render the timestep they
start on, sorted by the number of matches in that timestep (i.e. frames with most best matches). The member ID and the timestep index
are printed below each frame. We color the matching patches based on their score, where blue means better matches. As we see in a, b,
our method finds many diverse examples of the queried behavior. Even with a single patch of rare behavior (c) we can find its other
instances. Compared to the MSE baseline in d, our method returns much more useful results.
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(a) Crown query (ours).

(b) Crown query (SIFT).

(c) Splashing query (ours).

(d) Splashing query (SIFT).

Fig. A3: An extended version of Fig. 5. Comparison of our similarity metric to SIFT on the droplet ensemble. a, b: we see that both
methods produce good results on the fluid crown query, as it is very suitable for the SIFT descriptors. c, d: However, on the splashing
query our method returns more robuts results, as SIFT is struggling to match small disperse droplets.
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Fig. A4: An example query for splashing in the droplet splash ensemble. We provided three positive examples of spraying and three
negative examples containing crowns without spray. The system successfully finds many other examples of droplet sprays in the ensemble.
The model generalizes well beyond the query examples, matching instances with different spray shapes and scene illumination. We not
only find members with splashing but see when the splashing transition happens temporally.
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Fig. A5: An extended version of Fig. 7. Rendered matches to the turbulent queries from Tab. 2. Each row corresponds to a query. On the
left, we show the patches in the query, and on the right, we show the matching patches from the ensemble. We only render the first frame
of each patch. We show the top 10 matches as well as some examples of lower matches. The icon on the query patches indicates whether
a patch is a positive (+) or a negative (-) example.
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(a) Including all results.
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(b) Excluding query members.

Fig. A6: An extended version of Fig. 8. We are measuring the distribution of search quality for “cylinder” wrt. random queries. Each row
represents a query type, e.g., ’turb 3+1-’ means queries containing three random turbulent patches and one random non-turbulent patch.
In the columns, we compute the same quality metrics as in Tab. 2, with all metrics ranging from 0 to 100. a: Our model shows better
results than the baselines, especially on larger queries. We also see that the variance is reduced when more examples are used in the
query. b: We evaluate the model’s generalization by excluding patches from members mentioned in the query. Performance is slightly
worse (as expected when removing the best matches), but the model is still successful. This suggests that the model generalizes beyond
the pretext task and finds other instances of behavior.
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Fig. A7: An extended version of Fig. 9. The variance of search quality wrt. training process. Here we have trained our model ten times
and performed the search with each one. We used the same manually constructed queries as in Tab. 2. While some variance is present, it
is not significant and decreases with increasing query size.
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