Hybrid Image Processing Approach for Autonomous Crack Area Detection and Tracking Using Local Digital Image Correlation Results Applied to Single-Fiber Interfacial Debonding


Local digital image correlation is a popular method for accurate full field displacement measurements. However, the technique struggles at autonomously tracking emerging and propagating cracks. We proposed a hybrid approach which utilizes image processing techniques in combination with local digital image correlation to autonomously monitor cracks in a mechanically loaded specimen. Our approach can extract and track crack surfaces and provide a volume-based visualization of the crack growth. This approach was applied to single-fiber composite experimental results with interfacial debonding from the literature. Results quantitatively show that strong interfacial fiber/matrix bonding leads to slower interfacial crack growth, delays interfacial crack growth in the matrix, requires higher loadings for crack growth and shows a specific crack path distinct from the one obtained for weak interfaces. The approach was also validated against a manual approach where a domain scientist extracts a crack using a polygon extraction tool. The method can be used on any local digital image correlation results involving damage observations.

Engineering Fracture Mechanics